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Abstract

A minimal representation of the N = 8 extended worldline supersymmetry,
known as the ultra-multiplet, is closely related to a family of supermultiplets
with the same, E8 chromotopology. We catalogue their effective symmetries
and find a Spin(4) × Z2 subgroup common to them all, which explains
the particular basis used in the original construction. We specify a
constrained superfield representation of the supermultiplets in the ultra-
multiplet family, and show that such a superfield representation in fact exists
for all adinkraic supermultiplets. We also exhibit the correspondences between
these supermultiplets, their Adinkras and the E8 root lattice bases. Finally,
we construct quadratic Lagrangians that provide the standard kinetic terms and
afford a mixing of an even number of such supermultiplets controlled by a
coupling to an external 2-form of fluxes.

PACS numbers: 11.30.Pb, 12.60.Jv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

An off-shell model in one bosonic dimension4 identifiable as the worldline, with N = 8
supersymmetry was named ultra-multiplet in its inaugural presentation in the physics literature
[1]; see also [2–5]. The ultra-multiplet was introduced in a manifestly Spin(4)×Z2-symmetric
notation; see below and in particular appendix C. By means of a systematic component field
redefinition by now known as node-raising/lowering [6–8], this supermultiplet is seen to be
closely related to a family of supermultiplets, identifiable with the ‘root superfield’ of [9–11].

4 A two-dimensional on-shell model under a compactification produces a one-dimensional off-shell model.
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All members of this family have equivalent chromotopologies [8, 12] and are describable in
the common Spin(4) × Z

e
2-basis. However, as we show herein, these supermultiplets have

different effective symmetries5. The concept of such symmetries is ubiquitous in fundamental
physics, and we trust the general motivation for their study is self-evident. In addition, this
is the lowest N-extended supersymmetry where the minimal supermultiplet is a maximal,
(Z2)

N/2-quotient, and is unique in having eight bosons and eight fermions, transformed into
each other by eight Q’s—a new eightfold way paradigm. We also couple the supermultiplets
in the ultra-multiplet family to background fluxes, exhibiting a super-Zeemann effect and
providing another example of the general framework of [13].

Worldline N = 8 supersymmetry is generated by eight supercharges QI and the worldline
Hamiltonian, H = i∂τ , satisfying the relations

{QI,QJ} = 2δIJH, [H,QI] = 0, (QI)
† = QI, H † = H. (1.1a)

In superspace, there also exist eight super-derivatives DI , satisfying

{DI, DJ} = 2δIJH, [H, DI] = 0 = {QI, DJ}. (1.1b)

Here, I, J = 1, . . . , 8, and the explicit appearance of δIJ as an invariant symbol implies
that the maximal symmetry of the system (1.1) is O(8), of which the Q’s span the 8-vector
representation, as do independently the D’s. In the study of representations of the algebra
(1.1), we will often be able to omit the (QI, DI) → (−QI,−DI) reflection operations for any
fixed I ∈ {1, . . . , 8}, thus reducing to the SO(8) subgroup. In turn however, we will have to
pass to the double-cover Spin(8), and also find use for its Z2-extension, Pin(8), although less
frequently as a symmetry.

In section 2, we summarize the basic facts about the ultra-multiplet, and then re-analyze
it in section 3 in terms of Adinkras [7, 8, 12, 14, 15]. This leads us to catalogue, in section 4,
the effective symmetries of the ultra-multiplet and its node-raised relatives. This reveals, in
section 5, the group-theoretic reason behind the existence of the basis that is computationally
effective throughout the entire family of supermultiplets [1] and a triality-rotation thereof.
Returning to more physical applications, supermultiplets from the ultra-multiplet family are
coupled to external (background) fluxes in section 6, and section 7 collects our concluding
comments and outlook. Appendix A relates the adinkraic methods to the more traditional
supersymmetry techniques [16–19]; appendix B details the various notions of isomorphism
between supermultiplets, and so specifies what we mean by ‘the ultra-multiplet;’ appendix C
clarifies the general nature of the Spin(N) × Z

e
2 ⊂ Spin(2N) basis; appendix D presents the

correspondences between the E8 algebra, root lattice bases, the e8 binary code, the Adinkras
depicting the ultra-multiplet family and this supermultiplet family itself.

2. Field theory of the free ultra-multiplet and family

A translation of the notation of [1] informs us that the component fields of the ultra-multiplet
may be identified as eight real bosons: two scalars, A,B, and two rank-2 antisymmetric
tensors, Aα̂β̂ , and Bα̂β̂ of spin(4); the indices α̂, β̂, etc take on values 1, . . . , 4. The Levi-
Civita tensor εα̂β̂γ̂ δ̂ involving these indices can be used to impose a self-duality condition on
the rank-2 antisymmetric tensors Aα̂β̂ , and Bα̂β̂ according to

Aα̂β̂ = + 1
2εα̂β̂

γ̂ δ̂Aγ̂ δ̂, Bα̂β̂ = − 1
2εα̂β̂

γ̂ δ̂Bγ̂ δ̂ . (2.1)

5 Unlike dynamical symmetries, which are determined by the action functional, these symmetries characterize the
supermultiplets themselves and so also every model built from them.

2



J. Phys. A: Math. Theor. 42 (2009) 415206 M G Faux et al

As representations of Spin(4) = SU(2)×SU(2), we identify A,B ∼ (1, 1), Aα̂β̂ ∼ (3, 1) and
Bα̂β̂ ∼ (1, 3). The supermultiplet also includes eight fermions ψK̂α̂ ∼ (2, 2)±. As indicated,
they carry a K̂-type index, which takes on values of ‘+’ and ‘−.’ The values of such indices are
additive and stem from a Spin(2) = U(1) charge. However, the explicit use of the diagonal
matrices δK̂L̂ and (σ 3)K̂L̂ as invariants in equation (2.3c) along with the off-diagonal (σ 1)K̂L̂
and εK̂L̂ indicates covariance only with respect to a discrete subgroup the net total value of
these indices is to be taken (mod 2). This then distinguishes only even vs. odd numbers of K̂-
type indices, i.e., tensors vs. spinors, and so identifies these indices as Spin(1) = Z2 labels. In
addition however, the specific basis (2.3) does consistently distinguish K̂ = +1 from K̂ = −1,
and so the conjugate spinors of a Spin(2) ⊃ Spin(1). We therefore ‘extend’ Spin(1) = Z2

into ‘Ze
2’, but hasten to emphasize that the group structure denoted as ‘Spin(4) × Z

e
2’ only

includes this Z2 = Spin(1), not its ‘extension’6; see appendix C.
For future convenience, we introduce for each component field an a priori unconstrained

and unprojected superfield of the same name (but set in bold font), so that the lowest component
of each such superfield is the said component field. To wit,

A = A|, Aα̂β̂ = Aα̂β̂ |, B = B|, Bα̂β̂ = Bα̂β̂ |, ψK̂α̂ = ΨK̂α̂|, (2.2)

where right-delimiting ‘|’ denotes evaluation at θ K̂α̂ → 0 in superspace. The supersymmetry
transformations between the component fields (A,B,Aα̂β̂ , Bα̂β̂ |ψK̂α̂) may then be summarized
by a set of super-differential equations relating the corresponding superfields (for details, see
appendix A).

To describe a Valise7 supermultiplet, these super-differential relations are

DK̂α̂A = i(σ 3)K̂
L̂ΨL̂α̂, DK̂γ̂ Aα̂β̂ = i

[
δγ̂ [α̂ΨK̂β̂] + εα̂β̂γ̂

δ̂ΨK̂δ̂

]
, (2.3a)

DK̂α̂B = i(σ 1)K̂
L̂ΨL̂α̂, DK̂γ̂ Bα̂β̂ = iεK̂

L̂[δγ̂ [α̂ΨL̂β̂] − εα̂β̂γ̂
δ̂ΨL̂δ̂

]
, (2.3b)

DK̂α̂ΨL̂γ̂ = [
δα̂γ̂ (σ 3)K̂L̂(∂τ A) + δK̂L̂(∂τ Aα̂γ̂ ) + δα̂γ̂ (σ 1)K̂L̂(∂τ B) + εK̂L̂(∂τ Bα̂γ̂ )

]
. (2.3c)

The superfield multiplet (A, B, Aα̂β̂ , Bα̂β̂ |ΨK̂α̂) constrained by the relations (2.3) describes
the ultra-multiplet in terms of a priori unconstrained, off-shell superfields, the use of which
ought to facilitate eventual quantization by path-integral methods. Given the super-differential
equations (2.3), a direct calculation on all the fields in the multiplet implies that (1.1b) are
satisfied; each index I, J, . . . therein corresponds to an index-pair (K̂, α̂), (L̂, β̂), . . .. As
promised in the introduction, this notation exhibits a manifest Spin(4) × Z

e
2-labeling.

Finally, there is a simple Lagrangian that is invariant with respect to N = 8 extended
worldline supersymmetry, in the usual sense of supersymmetric theories:

Lultra-mult. = 1
2 (∂τA)2 + 1

2 (∂τB)2 + 1
8 (∂τAα̂γ̂ )2 + 1

8 (∂τBα̂γ̂ )2 − i 1
2ψ K̂α̂∂τψK̂α̂ . (2.4)

Given here in component form for simplicity, this Lagrangian in fact has a manifestly N = 8
supersymmetric formulation in superspace [9, 20], as afforded by the superfield multiplet
formulation (2.2) and (2.3). Thus, (2.1) and (2.4) describe a local, N = 8 supersymmetric
free-field model for the (A,B,Aα̂β̂ , Bα̂β̂ |ψK̂α̂) supermultiplet on the worldline.

More importantly however, this model provides a basis for an entire family of
supersymmetric models that are closely related to (2.1) and (2.4). These related models

6 This Z2 = Spin(1) assigns an additive, (mod 2) charge ‘0’ to tensors and ‘1’ to spinors. Augmenting this by
distinguishing ±1 as corresponding to the two different spinors of Spin(2) = U(1) ⊃ Spin(1) = Z2—but retaining
the (mod 2) structure otherwise—leads to an algebraic structure that lacks associativity, and so does not form a proper
symmetry group. By ‘Ze

2 group’ we then always mean just this Spin(1) = Z2.
7 The term ‘Valise,’ in the language developed to describe the associated Adinkras [6, 8, 12, 14, 15], indicates that
all the bosons possess the same engineering units, and similarly all the fermions, offset by 1

2 : [ψĵ ] = [φi ] ± 1
2 .
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may be revealed by using the ‘root superfield’ formalism of [9]. We can implement this
approach here by simply replacing the bosonic component fields—and so also the superfields
(2.2)—appearing above according to the rules

A → ∂−a1
τ A, B → ∂−a2

τ B, Aα̂γ̂ → ∂−a3
τ Aα̂γ̂ , Bα̂γ̂ → ∂−a4

τ Bα̂γ̂ , (2.5)

where a1, a2, a3 and a4 are non-negative integers. From the form of the Lagrangian (2.4), it
is seen to remain local as long as these integers a1, . . . , a4 are chosen to be either 0 or 1. It
can also be easily shown that the apparent non-locality introduced into the supersymmetry
transformation laws (2.3) is illusionary. The transformation laws can be rewritten in completely
local ways after implementation of (2.5). We call the process of changing the values of an
exponent from, say, a1 = 0 to a1 = 1 ‘raising the node A’. This operation has the remarkable
property of changing the propagating bosonic field, in this case A, into an auxiliary bosonic
field:

L(1,0,0,0)
ultra-mult. = 1

2 (∂τB)2 + 1
8 (∂τAα̂γ̂ )2 + 1

8 (∂τBα̂γ̂ )2 − i 1
2ψ K̂α̂∂τψK̂α̂ + 1

2A2. (2.6)

The entire family of models is enumerated by the {0, 1}-valued components of the vector
�a = (a1, a2, a3, a4). Another example is provided by the Lagrangian in the case where
�a = (1, 1, 1, 1):

L(1,1,1,1)
ultra-mult. = −i 1

2ψ K̂α̂∂τψK̂α̂ + 1
2A2 + 1

2B2 + 1
8 (Aα̂γ̂ )2 + 1

8 (Bα̂γ̂ )2, (2.7)

where only the fermions are seen to describe any on-shell propagating degrees of freedom.
We emphasize that the different models, obtained via the non-local mapping

(2.5) and parametrized by the various 4-vectors �a, involves different supermultiplets:
whereas the Lagrangian Lultra-mult. (2.4) involves the (8|8)-dimensional supermultiplet
(A,Aα̂γ̂ , B, Bα̂γ̂ |ψK̂α̂), the Lagrangian L(1,0,0,0)

ultra-mult. (2.6) involves the (7|8|1)-dimensional
supermultiplet (Aα̂γ̂ , B, Bα̂γ̂ |ψK̂α̂|A)—where A has been rendered auxiliary, and so on for
all other examples listed in table 1. Already the count of propagating degrees of freedom
indicates that most of these cannot be related by local field redefinitions. The non-local
mapping (2.5) is then seen as a classifying tool that relates many inequivalent supermultiplets
and their Lagrangians (see table 1). Finally, we note that the number of on-shell bosonic and
on-shell fermionic degrees of freedom is not equal in most of these supermultiplets, which is
consistent in one- and (1+1)-dimensional theories. This phenomenon was first noticed and
employed in providing a manifestly supersymmetric Lagrangian formulation for the heterotic
superstring [21].

The symmetries of the formulation of the ultra-multiplet above allow for a remarkable
circumstance. In the (0, 0, 0, 0)-action of (2.4) there are no auxiliary fields. In the (1, 1, 1, 1)-
action of (2.7) there are eight auxiliary fields. The symmetries and structure of the system (2.3)
are precisely such that they permit a sequence of models with 1, 2, . . . , 8 bosonic auxiliary
fields to appear. Table 1 specifies the enumeration of how all these models correspond to
the exponents �a. A supersymmetric free Lagrangian of the type (2.4)–(2.6)–(2.7) may be
fashioned easily for each of them by starting from (2.4) and performing the substitution
(2.5) according to the desired choice, picked from table 1. Each of these has a manifestly
supersymmetric rendition, as shown in [9, 20].

We will return below to explain the ‘description degeneracy’ by way of tracing the group-
theoretic reason for the existence of this peculiar Spin(4) × Z

e
2-basis [1]. First, however,

we reconsider the above-described ultra-multiplet family of supermultiplets, using Adinkras
[7, 8, 12, 14, 15].

4
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Table 1. Exponents of the mapping (2.5), for adapting the Valise ultra-multiplet model (2.1)–(2.4)
via node-raising, the numbers of propagating and auxiliary bosons in each, and the degeneracy
of this description. The choices of �a represent distinct supermultiplets and Lagrangians, related
to each other by the non-local mapping (2.5). Those in the same row are related by a local field
redefinition and so are equivalent, whereas any two models from different rows are inequivalent.

No of propagating No of auxiliary Description
bosonic fields bosonic fields �a = (a1, a2, a3, a4) degeneracy

8 0 (0, 0, 0, 0) 1
7 1 (1, 0, 0, 0), (0, 1, 0, 0) 2
6 2 (1, 1, 0, 0) 1
5 3 (0, 0, 1, 0), (0, 0, 0, 1) 2

4 4
(1, 0, 1, 0), (0, 1, 1, 0)

(1, 0, 0, 1), (0, 1, 0, 1)

}
4

3 5 (1, 1, 1, 0), (1, 1, 0, 1) 2
2 6 (0, 0, 1, 1) 1
1 7 (1, 0, 1, 1), (0, 1, 1, 1) 2
0 8 (1, 1, 1, 1) 1

3. Graphic depictions of the ultra-multiplet family

A great many supermultiplets—and certainly the ultra-multiplet as we will see—turn out to
be describable in terms of Adinkras8:

(1) For every component field draw a node: open for bosons, closed for fermions.

(2) For every pair of component fields, φi and ψĵ , obtained from each other by acting with
QI , draw an I-colored edge connecting the ith open node to the ĵ th closed node:

(a) if QI(φi) = ∂λ
τ ψĵ and QI(ψĵ ) = i∂1−λ

τ φi for λ = 0 or 1, draw the edge solid;

(b) if QI(φi) = −∂λ
τ ψĵ and QI(ψĵ ) = −i∂1−λ

τ φi for λ = 0 or 1, draw the edge dashed.

(3) Position the nodes at relative heights that are proportional to the engineering units of the
corresponding component fields. Here and in appendix A, we use the symbols φi and ψĵ

as generic labels for the bosons and fermions in ultra-multiplet.

Using these rules, the ultra-multiplet (2.1) and (2.3) is depicted by the Adinkra:

(3.1)

8 Owing to the 1–1 correspondence between the superfield multiplet (2.2) and (2.3) and the supermultiplet consisting
of only the lowest components (2.2), Adinkras such as (3.1) and (3.2) are seen to also depict, and just as faithfully, the
entire superfield multiplet (2.2) and (2.3). In turn, this implies that every adinkraic supermultiplet has a manifestly
supersymmetric off-shell formulation in superspace—in addition to that presented in [8, 22]; the details of this—and
especially a systematic construction of manifestly supersymmetric action functionals to describe the dynamics of
superfield multiplets—are beyond our present scope.

5
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and the Adinkra of the distinct supermultiplet (Aα̂γ̂ , B, Bα̂γ̂ |ψK̂α̂|A), obtained by raising one
node and for which (2.4) presents a free-field Lagrangian, is

(3.2)

The bosonic node raised above the rest corresponds to a component field with engineering
units higher than the rest, whereby it must be auxiliary; here, it is the component field A.

These depictions of the supermultiplets are faithful: we can reverse-engineer the
supersymmetry transformation rules and recover the likes of equations (2.1)–(2.3) completely:
given any Adinkra, we reverse the above assignments and obtain

QIφi = (LI)i
ĵψĵ ,

QIψĵ = i(RI)ĵ
k(∂τφk);

}
↔

{
DIΦi = −i(LI)i

ĵΨĵ , φi := Φi |,
DIΨĵ = −(RI)ĵ

k(∂τΦk), ψĵ := Ψĵ |,
(3.3)

where Φi and Ψĵ are a priori unconstrained and unprojected superfields. The matrices LI and
RI satisfy [23]

(LI)i
ĵ (RJ)ĵ

k + (LJ)i
ĵ (RI)ĵ

k = 2δi
k

(RJ)ı̂
k(LI)k

ĵ + (RI)ı̂
k(LJ)k

ĵ = 2δı̂
ĵ

}
⇒ (RI)ĵ

i = (
L−1

I

)
ĵ

i . (3.4)

It may further be proven that the positive-definite canonical metric δIJ occurring in the defining
relationships of the worldline supersymmetry (1.1) induces positive definite metrics over Rφ

and Rψ , which then occurs in the Lagrangians such as (2.4), (2.6) and (2.7). For these to be
invariant with respect to N = 8 extended supersymmetry,

(RI)ĵ
i = (

LT
I

)
ĵ

i ,
(3.4)
⇒ (

L−1
I

)
ĵ

i = (
LT

I

)
ĵ

i . (3.5)

That is, the LI, RI matrices are orthogonal.
The classification program of [8, 12, 14, 15] has been completed for N � 28 and is in

progress for higher N. The (8|8)-dimensional ultra-multiplet turns out to be both minimal, and
essentially unique—up to permutations of the QI , and given the specification [ψĵ ] = [φi] + 1

2 .
The particular ‘wiring diagram’ formed by the 8-colored edges of the Adinkra together with
the coloring of the nodes is called the chromotopology of the Adinkra and is encoded by the LI

matrices in (3.3). It may be specified unambiguously as a (Z2)
k-quotient of the 8-cube where

the edges along the I th dimension are colored in the I th color. This quotient nature implies
that the following quasi-projectors9:

�̂±
1234 := 1

2 [H 2 ± Q1Q2Q3Q4, ] ↔ b1 = [1 1 1 1 0 0 0 0], (3.6a)

�̂±
3456 := 1

2 [H 2 ± Q3Q4Q5Q6, ] ↔ b2 = [0 0 1 1 1 1 0 0], (3.6b)

�̂±
5678 := 1

2 [H 2 ± Q5Q6Q7Q8, ] ↔ b3 = [0 0 0 0 1 1 1 1], (3.6c)

�̂±
2468 := 1

2 [H 2 ± Q2Q4Q6Q8, ] ↔ b4 = [0 1 0 1 0 1 0 1], (3.6d)

9 These local operators square to an H 2-multiple of themselves, rather than themselves. Having noted this, we will
for simplicity no longer insert the ‘quasi’ prefix. How to construct a system of operators corresponding to (3.6),
which impose perhaps more familiar (anti-)self-duality conditions, is shown in [22].

6
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act so as to produce an H 2-multiple of each component field, and so do also all their products.
The four binary 8-vectors at the right-hand side of (3.6) generate the e8 doubly-even binary
linear block code. We say that the graph (3.1) is an e8-encoded quotient, I 8/(Z2)

4, of the
8-cube, I 8. Visually, this may be verified by tracing a 4-colored quadrangle, in any of the
four 4-color groups indicated in (3.6) or by any of their products, and starting from any node:
such quadrangles always close, and with an overall sign that is determined by the sign-choice
in (3.6).

Conceptually, this quotient nature of the minimal supermultiplets of N = 8 extended
supersymmetry is very similar to the familiar decomposition of the 4-component Dirac spinor
in four-dimensional spacetime into the left- and right-handed 2-component Weyl spinors. It
is just that for N = 8, there exist four mutually commuting projections, implemented, e.g., by
the operators (3.6).

The operators (3.6) do not commute with the infinitesimal supersymmetry transformation
operator, δQ(ε) := εIQI , and the a priori unconstrained and unprojected (128|128)-
dimensional supermultiplet(
φ[I1···I2k]|ψ[I1···I2k+1]

)
, F[I1···Ik] := H−� k

2 �Q[I1 · · · QIk](F0) =
{
φ[I1,...,Ik ] if k is even,

ψ[I1,...,Ik] if k is odd,

(3.7)

is not left invariant by any of the operators (3.6). However, it contains sub-supermultiplets
that are left invariant by the right-action of the operators (3.6):

�̂±
∗
(
F[I1,...,Ik]

)
:= H−� k

2 �Q[I1 · · ·QIk]�̂
±
∗ (F0), (3.8)

so that, for example,

F +
0 := (F0 + F1234), F +

5 := F5 + F12345, F +
25 := F25 − F1345, (3.9a)

F +
1 := (F1 + F234), F +

12 := F12 + F34, F +
125 := F125 + F345, (3.9b)

F +
2 := (F2 − F134), F +

15 := F15 + F2345, etc. (3.9c)

The relative signs in the component field definitions in the right-hand side of (3.9) ensure
both that each so-defined component field turns into a uniform, +H 2-multiple of itself upon
the right-action of �̂+

1234, and also that the resulting, (64|64)-dimensional supermultiplet is a
proper, closed orbit of the supersymmetry algebra (1.1) under the usual, left-action of the Q’s:

Q1F
+
0 = iF +

1 , Q2F
+
0 = iF +

2 , . . . Q5F
+
0 = iF +

5 , (3.10a)

Q1F
+
1 = ∂τF

+
0 , Q2F

+
1 = −∂τF

+
12, . . . Q5F

+
1 = −∂τF

+
15, (3.10b)

Q1F
+
2 = ∂τF

+
12, Q2F

+
2 = ∂τF

+
0 , . . . Q5F

+
2 = −∂τF

+
25, (3.10c)

Q1F
+
5 = ∂τF

+
15, Q2F

+
5 = ∂τF

+
25, . . . Q5F

+
5 = ∂τF

+
0 , (3.10d)

and so on.
In turn, �̂−

1234 will right-annihilate the so-defined F +
···’s; for example,

�̂−
1234

(
F +

0

) = �̂−
1234(F0 + F1234) = �̂−

1234(F0 + H−2Q1Q2Q3Q4F0), (3.11a)

= �̂−
1234(F0) + H−2Q1Q2Q3Q4�̂

−
1234(F0), (3.11b)

= 1
2 [H 2 − Q1Q2Q3Q4]F0 + 1

2H−2Q1Q2Q3Q4[H 2 − Q1Q2Q3Q4]F0,

= 1
2 [H 2 − (+H 2)]F0,= 0. (3.11c)

7
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That is, ker
(
�̂+

1234

) = img
(
�̂−

1234

)
. Having thus accomplished the �̂+

1234-projection,
we construct the �̂+

3456-projection thereof. Upon this (32|32)-dimensional (Z2)
2-quotient

supermultiplet, the right-action of the product operator

�̂+
1234�̂

+
3456 = 1

4 [H 4 + H 2Q1Q2Q3Q4 + H 2Q3Q4Q5Q6 − H 2Q1Q2Q5Q6],

� 1
4 [H 4 − H 4 − H 4 − H 2Q1Q2Q5Q6]

= − 1
2H 2[H 2 + Q1Q2Q5Q6] = −H 2�̂+

1256 (3.12)

is indistinguishable from an H 4-action. Next, we similarly construct the subsequent
�̂+

3456-projection thereof, and finally the �̂+
3456-projection, resulting in the (8|8)-dimensional

supermultiplet (3.1).
For the system (3.6), we have for all 4-plets I,K = 1234, 3456, 5678, 2468:

�̂+
I + �̂−

I = H 2, �̂+
I ◦ �̂−

I = 0, and
[
�̂±

I , �̂±
K
] = 0 = [

�̂±
I , �̂∓

K
]
, (3.13)

so that the successive application of any �̂
βI
I ◦�̂

βI
K , for any I �= K and βI, βK = ±1, quarters

the supermultiplet10. The application of any

�̂
βI
I �̂

βJ
J �̂

βK
K �̂

βL
L , with the multi-indices I,J ,K,L all different (3.14)

then cuts the component field content of the a priori unconstrained and unprojected
supermultiplet to its 16th: (128|128) → (8|8). N = 8 is the lowest number of worldline
supersymmetries, N, for which this maximal 2N/2-fold reduction, through a (Z2)

N/2-quotient,
can occur.

The possible choices of the four relative signs, βI , in the operators (3.6) provide 24 = 16
distinct projections. However, quotient supermultiplets with the same product

∏
I βI are

equivalent to each other by simple field redefinitions, as detailed in Construction 4.2 of [14].
In turn, no field redefinition can transform a member of the

∏
I βI= + 1 equivalence class into

any member of the
∏

I βI = −1 equivalence class. Generalizing the nomenclature of [24],
we use the following definition.

Definition 3.1. With the notation as in equations (3.6), (3.7) and (3.14), a Valise (8|8)-
dimensional (Z2)

4-quotient supermultiplet of N = 8-extended worldline supersymmetry
with

∏
I βI = +1 is an ultra-multiplet (row 1 of table 1), the one with

∏
I βI = −1

is a twisted ultra-multiplet (see (4.11), below). Their node-raised relatives then populate,
respectively, the ultra-multiplet family (table 1) of supermultiplets and their twisted variants.

All such iterated projections turn out to be classified by doubly-even linear binary block
codes, used for error-detecting and error-correcting in information transfer. The permutation
equivalence class of codes corresponding to the quartet of projection operators (3.6) is denoted
e8, and is indeed related to the familiar E8 Lie group and corresponding lattice [12] (see
appendix D). The computation that unambiguously determines whether two Adinkras and
their corresponding supermultiplets are equivalent involves the Z2-valued cubical cohomology
of the Adinkras, as detailed in [15].

10 This situation is not unfamiliar to physicists: the projector to a Majorana-real spinor complements the one to the
Majorana-imaginary spinor, and these two annihilate each other. Similarly the Weyl projector to a left-handed spinor
complements the one to a right-handed one, and they annihilate each other. In general, there is no reason for a
Majorana and a Weyl projector to satisfy any relation; but if they commute, we can construct Majorana–Weyl spinors
that have a quarter of the degrees of freedom of a Dirac spinor.

8
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4. Symmetries in the ultra-multiplet family

Comparing the Adinkras (3.1) and (3.2), it is evident that the right-most open node was
raised from the bottom row of the former Adinkra to obtain the latter. This node should thus
be identified with either one of the ‘singlet’ component fields A,B, when passing from the
Lagrangian (2.6) to (2.7). Considering the Adinkra (3.1) however, it seems self-evident that
the eight open nodes offer completely equivalent candidates for raising: Any one of them
could have been raised and so identified with either one of A,B, upon which a corresponding
permutation of the remaining nodes and a redefinition of some of the component fields into
their own negatives (which swaps the dashedness of every incident edge) would render the
result indistinguishable from (3.2) and (2.6).

Indeed, there is a major difference between the specification (2.1)–(2.3) and the
supermultiplets described in section 3:

(1) The specifications (2.1)–(2.3) manifestly admit a continuous group of symmetries,
Spin(4) × Z2, and so describe an inherently continuous equivalence class of
supermultiplets.

(2) The projections (3.6) break the O(8) symmetry of (1.1) to a subgroup �(e8), and so
describe an equivalence class of objects corresponding to the (discrete) graphs called
Adinkras.

It may be shown that |�(e8)| = 8!
1344 = 30 [12], so that there is a total of 30 distinct, but

Q-permutation equivalent systems of projectors such as (3.6); see also appendix B. Each one
of these 30 classes of permutations of the system (3.6) defines a 1344-component equivalence
class of supermultiplets depicted as (3.1). In each of these, a basis of Q1, . . . ,Q8 is fixed,
which in turn ties the fermions’ basis rigidly to the basis of the bosons.

Valise symmetry. We may therefore turn this around and ask for the most general linear
redefinitions of the bosonic component fields, φi → φ̃i , the fermionic fields, ψĵ → ψ̃ĵ , and
the supercharges—or, analogously, the superfields and the super-differential operators in (2.2)
and (2.3), the result of which would still furnish an (8|8)-dimensional supermultiplet of the
N = 8 extended worldline supersymmetry (1.1) and with [ψ̃ĵ ] = [̃φi] + 1

2 . The adinkraic
representatives in this continuous family of supermultiplets will, by the classification of [12,
14], have to be Q-permutation equivalent supermultiplets, with E8 topology, and depicted as
(3.1)—these being unique adinkraic (8|8)-dimensional supermultiplets of N = 8 worldline
supersymmetry. For similar reasons, the supermultiplets specified in equations (2.1)–(2.3)
would also have to find their home in this maximal continuous family.

Members in this family may be partitioned through a hierarchy of increasingly subtler
distinctions, and appendix B details some of the possible types of isomorphisms and ensuing
equivalence classes. Suffice it here to state that we clearly distinguish between the ultra-
multiplet and its twisted variant, as stated in definition 3.1.

We will refer to such most general basis-redefining transformations as effective
symmetries, and denote their group by Geff . We reserve the term dynamical symmetries
for the analogous notion specified by the dynamics, i.e., action functionals, and note that
they are logically separate from Geff , which is determined entirely from the structure of the
supermultiplet itself.

Since the eight bosons φi have identical engineering units, we may as well consider their
arbitrary real linear combinations; the same is true of the fermions. We therefore require that

RQ := Span(Q1, . . . , Q8), Rφ := Span(φ1, . . . , φ8), Rψ := Span(ψ1, . . . , ψ8)

(4.1)

9
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are all real eight-dimensional representations of Geff . In addition, as mentioned in the
discussion of equations (3.4) and (3.5), there exist canonical positive-definite metrics on
RQ, Rφ and Rψ . Preserving these, it must be that Geff ⊂ O(8)Q × O(8)φ × O(8)ψ .

Also, the Geff-representation assignments (4.1)—and eventually (4.3)—must agree with
the supersymmetry transformation rules (3.3), so that Geff is the maximal group with respect
to which the assignment (4.1) is consistent with the projections

π̂ψ(RQ ⊗ Rφ) = Rψ and π̂φ(RQ ⊗ Rψ) = Rφ (4.2a)

being of the maximum rank, and satisfying the supersymmetry relations (1.1):

π̂ψ(RQ ⊗ π̂φ(RQ ⊗ Rψ)) = π̂1(Sym2 RQ) ⊗ Rψ = 11 ⊗ Rψ, (4.2b)

π̂φ(RQ ⊗ π̂ψ(RQ ⊗ Rφ)) = π̂1(Sym2 RQ) ⊗ Rφ = 11 ⊗ Rφ, (4.2c)

where Sym2 RQ ⊃ 11 is consistent with RH = 11 on the world line (1.1)11.
To satisfy these requirements, we assign in the notation of [25]:

RQ := 8v, Rφ := 8s , Rψ := 8c of Spin(8). (4.3)

Returning to the Valise Adinkra (3.1), we read off the (LI )i
ĵ and (RI)ĵ

i matrices (see
appendix A), and note that they are analogous to the familiar Pauli matrices (σm)αβ̇ and
(σ̄m)αβ̇—the off-diagonal blocks in the chiral representation of the Dirac gamma matrices in
(3+1)-dimensional spacetime. The Pauli matrices are invariant with respect to the simultaneous
Lorentz group Spin(1, 3)-transformation of the vector, spinor and co-spinor representations,
the elements of which are labeled by the indices m,α, β̇, respectively.

The analogous computation here proves that the matrices (LI)i
ĵ and (RI)ĵ

i are invariant
with respect to a simultaneous Spin(8)-transformation of the representations (4.3), the elements
of which are labeled by the indices I, i, ĵ , respectively.

So that Rφ and Rψ in (4.3) would be faithful representations of Geff , we must in fact
use Geff = Spin(8) rather than SO(8). In fact, we may extend Geff = Spin(8) to Pin(8), by
including linear transformations of determinant −1, generated by reflections QI → −QI , for
any odd subset of I = 1, . . . , 8. We recall that the Rs and Rc in all orthogonal groups are
spanned by root-lattice vectors of the form

( ± 1
2 , . . . ,± 1

2

)
: Rs with a positive product of

components, and Rc with a negative one. It follows that the Pin(8)/Spin(8) � Z2 reflections
swap the two spinors of Spin(8): 8s ↔ 8c, and are the Z2 part of the S3 outer automorphism
of Spin(8).

Non-valise symmetry. As the bosonic nodes are raised one by one, Geff is broken to its
subgroups, while maintaining the relations (4.2), and with Rφ decomposing as

dim(Rφ) = 8 → 7 + 1 → 6 + 2 → 5 + 3 → 4 + 4 → 3 + 5 → · · · (4.4)

Of course, Rψ and RQ may well decompose along the way, but this is not evident from the
Adinkra. The results are shown in table 2.

In all the subgroups listed in table 3, the tensorial 8v column is assigned to
Span(Q1, . . . ,Q8). However, using the Spin(8) triality, this decomposes into the spinorial
representations of the subgroups of Spin(8). In turn, this assignment induces a Z2

action inherited from Spin(8), with respect to which Rφ = Span(φ1, . . . , φ8) and Rψ =
Span(ψ1, . . . , ψ8) transform as odd (spinorial) representations and Span(Q1, . . . ,Q8) is even
(tensorial). In addition, this tracing permits us to distinguish spinors from their conjugates,

11 This condition changes significantly in more than one-dimensional spacetime, where the right-hand side of this
hallmark relation of supersymmetry furnishes a nontrivial representation of the Lorentz symmetry.
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Table 2. A portion of the family of Adinkras with the E8 chromotopology, the maximal effective symmetry group Gmax.

Adinkra Geff QI φi ψı̂ Gout

Spin(8) 8v 8s 8c S3

Spin(7) 8 7 ⊕ 1 8 –

Spin(6) × Spin(2) (SU(4) × U(1)) 4+1 ⊕ 4∗−1 60 ⊕ 1−2 ⊕ 1+2 4−1 ⊕ 4∗
+1 Z

2
2

Spin(5) × Spin(3) (Sp(4) × SU(2)) (4, 2) (5, 1) ⊕ (1, 3) (4, 2) –

Spin(4) × Spin(4) (SU(2)2 × SU(2)2) (2, 1; 2, 1) (2, 2; 1, 1) (1, 2; 2, 1) Z
3
2

⊕(1, 2; 1, 2) ⊕(1, 1; 2, 2) ⊕(2, 1; 1, 2) Z
3
2

Note: Spin(6) = SU(4), Spin(5) = Sp(4), Spin(4) = SU(2)2, Spin(3) = SU(2), Spin(2) = U(1) and Spin(1) = Z2. By raising more than four open nodes, the
resulting Adinkras look like those depicted, but drawn upside-down, and the entries in the remaining columns turn out the same as already shown.
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Table 3. The Lie group Spin(8) and its subgroups for which one of 8v, 8s or 8c decomposes
according to the sequence (4.4); adapted from [25] using outer automorphisms.

Spin(8) Rφ = 8s RQ = 8v Rψ = 8c

Spin(7) 7 ⊕ 1 8 8

→ Spin(6) = SU(4) (6 ⊕ 1) ⊕ 1 4 ⊕ 4∗ 4 ⊕ 4∗
‡1→ Spin(4) × Z

e
2 ((1, 3)0 ⊕ (3, 1))0 (2, 2)+ ⊕ (2, 2)− (2, 2)− ⊕ (2, 2)+

⊕(1, 1)0 ⊕ (1, 1)0

Spin(6) × Spin(2) 60 ⊕ 1−2 ⊕ 1+2 4+1 ⊕ 4∗−1 4−1 ⊕ 4∗
+1

‡2→ Spin(4) × Z
e
2 ((1, 3)0 ⊕ (3, 1))0 (2, 2)+ ⊕ (2, 2)− (2, 2)− ⊕ (2, 2)+

⊕(1, 1)0 ⊕ (1, 1)0

Spin(5) × Spin(3) (5, 1) ⊕ (1, 3) (4, 2) (4, 2)
‡3→ Spin(3)2 × Spin(2) (3, 1)0 ⊕ (1, 1)−2 (2, 2)+1 ⊕ (2, 2)−1 (2, 2)+1 ⊕ (2, 2)−1

⊕(1, 1)+2 ⊕ (1, 3)0

‡2→ Spin(4) × Z
e
2 ((1, 3)0 ⊕ (3, 1))0 (2, 2)+ ⊕ (2, 2)− (2, 2)− ⊕ (2, 2)+

⊕(1, 1)0 ⊕ (1, 1)0

Spin(4) × Spin(4) (2, 2; 1, 1) (2, 1; 2, 1) (1, 2; 2, 1)

⊕(1, 1; 2, 2) ⊕(1, 2; 1, 2) ⊕(2, 1; 1, 2)
‡2→ (SU(2)D)2 × Z

e
2 ((3; 1)0 ⊕ (1; 1)0) (2; 2)+ ⊕ (2; 2)− (2; 2)− ⊕ (2; 2)+

⊕((1; 3)0 ⊕ (1; 1)0)

Note: Spin(6) = SU(4), Spin(5) = Sp(4), Spin(4) = Spin(3)2, Spin(3) = SU(2), Spin(2) = U(1) and
Spin(1) = Z2.
‡1

Z
e
2 labels conjugate spinors ‘±1’ and tensors ‘0’, but only Z2 with ‘+1’ ∼= ‘−1’ is the symmetry

group.
‡2 Spin(2) → Z

e
2; see appendix C.

‡3 Spin(5) × Spin(3) → (Spin(3) × Spin(2)) × Spin(3) = Spin(3)2 × Spin(2).

leaving us with the above-defined Z
e
2 throughout table 3. Nevertheless, only Spin(1) = Z2,

which ignores the distinction between the two conjugate spinors of Spin(2), is a subgroup in
each effective symmetry group, Geff .

Finally, once these group-theoretic assignments have been made, we can re-draw the
Adinkras more simply, using this Geff-encoded information:

8s

8v

8c

(4.5)

7

8

8

8

1

(4.6)
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60

4+1

4∗−1
4+1

4−1 4∗
+1

4+1 4∗−1 4+1

1−2 1+2

(4.7)

where the ‘inner’ arrows denote the successive application of 4∗−1, whereas the outer arrows
denote the successive application of 4+1.

(5, 1)

(4,2)

(4, 2)

(4,2)

(1, 3)

(4.8)

(2, 2;1, 1)
(2,1;2,1) (1,2;1,2)

(1, 2;2, 1) (2, 1;1, 2)

(2,1;2,1)(1,2;1,2)

(1, 1;2, 2)

(4.9)

The Adinkras with r > 4 raised nodes are upside-down renditions of those with 8−r raised
nodes; we thus omit them. By the ultra-multiplet family we herein mean the collection
of a total of nine supermultiplets, from the original, (8|8)-dimensional ultra-multiplet (4.5),
through (4.6)–(4.9) and on, until all eight bosonic nodes have been raised.

The so-obtained nine distinct supermultiplets are exactly indicated by the first column in
table 1, and correspond precisely to the concept of a ‘root superfield’, with its specification of
the �a-vector introduced in [9].

Once the supermultiplet

8s

8v

8c

(4.10)

in this family has been reached, we are free to raise one or more of the fermionic (closed)
nodes. However, in order to keep the Lagrangians local, this operation forces the introduction
of auxiliary fermions into the Lagrangians (2.4)–(2.6) and (2.7), as discussed in [9]. We defer
revisiting this ‘dark side’ of the ultra-multiplet family to a future opportunity, but note that
this requires that now Rψ decomposes following the pattern (4.4).

This suggests swapping the roles of the bosons and the fermions equations (2.1)–(2.3), also
called a Klein-flip. This may be seen as synonymous with swapping (Rφ|Rψ) = (Rs |Rc) →
(Rc|Rs), which was in turn shown above to be a Pin(8)/Spin(8) � Z2 operation generated
by reflections QI → −QI , and which swap the ultra-multiplet with its twisted variant (see

13
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Spin(8)
RQ = 8v

Rφ = 8s

Rψ = 8c

Spin(7)
8
7 ⊕ 1
8

Spin(6)× Spin(2)
4+1 ⊕ 4∗−1

60 ⊕ 1−2 ⊕ 1+2

4−1 ⊕ 4∗
+1

Spin(5)× Spin(3)
(4, 2)
(5, 1) ⊕ (1, 3)
(4, 2)

Spin(4)× Spin(4)
(2, 1;2, 1) ⊕ (1, 2;1, 2)
(2, 2;1, 1) ⊕ (1, 1;2, 2)
(1, 2;2, 1) ⊕ (2, 1;1, 2)

Spin(6)
4 ⊕ 4∗

(6 ⊕ 1) ⊕ 1
4 ⊕ 4∗

Spin(4)× Spin(2) = Spin(3)× Spin(3)× Spin(2)
(2, 2)+1 ⊕ (2, 2)−1

(3, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)−2 ⊕ (1, 1)+2

(2, 2)−1 ⊕ (2, 2)+1

Spin(3)D× Spin(3)D× e
2

(2;2)+ ⊕ (2;2)−
(3;1)0 ⊕ (1;1)0 ⊕ (1;3)0 ⊕ (1;1)0

(2;2)− ⊕ (2;2)+

Spin(4)× e
2 = Spin(3)× Spin(3)× e

2

(2, 2)+ ⊕ (2, 2)−
(3, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0 ⊕ (1, 1)0
(2, 2)− ⊕ (2, 2)+

Figure 1. The relevant subgroup chains of Spin(8). Throughout, we use: Spin(6) =
SU(4), Spin(5) = Sp(4), Spin(4) = Spin(3)2, Spin(3) = SU(2), Spin(2) = U(1) and Spin(1) =
Z2. In the Spin(6) = SU(4) → Spin(4) projection, both spinors, 4 and 4∗, of Spin(6) map to
the real 4-vector of Spin(4). Spin(3)D is the diagonal subgroup of Spin(3) × Spin(3) = Spin(4).
Finally, it is only the Z2 structure in Z

e
2 that is a proper symmetry group; nevertheless, distinguishing

between the two spinors of Spin(2) turns out possible and useful.

definition 3.1). Thus, in the representation (2.1)–(2.3), the twisting from the definition 3.1 is
equivalent to a Klein-flip followed by the lowering of eight bosonic nodes:

(A, B, Aα̂β̂ , Bα̂β̂ |ΨK̂α̂)
K.fl.←→ (Ψ̃+, Ψ̃+

α̂β̂
, Ψ̃−, Ψ̃−

α̂β̂
|CK̂α̂),

↓ 8-node lowering
(ÃK̂α̂|Ψ̃+, Ψ̃+

α̂β̂
, Ψ̃−, Ψ̃−

α̂β̂
), where CK̂α̂ = (∂τ ÃK̂α̂).

(4.11)

From the above discussion,
(
Ψ̃+, Ψ̃+

α̂β̂
, Ψ̃−, Ψ̃−

α̂β̂

∣∣CK̂α̂

)
is suitable for the ‘dark side’ of

the ultra-multiplet family, whereas
(
ÃK̂α̂

∣∣Ψ̃+, Ψ̃+
α̂β̂

, Ψ̃−, Ψ̃−
α̂β̂

)
is the twisted variant of

(A, B, Aα̂β̂ , Bα̂β̂ |ΨK̂α̂).
We reiterate that each of the so-obtained nine supermultiplets (4.5) and (4.10) has a

free-field local Lagrangian, modeled on (2.4)–(2.6)–(2.7) and exhibiting N = 8 extended
supersymmetry.

5. Group-theoretic underpinnings

We now turn to the general group-theoretic rationale behind the existence of the Spin(4)×Z
e
2-

basis, resolve the apparent counting discrepancy between the descriptions in sections 2 and
3, and also find a related Spin(4) × Z

e
2-basis for the ultra-multiplets, which accommodates

both ultra-multiplets and their twisted variants, extending the representation (2.1)–(2.3) and
its Klein-flip.

Kinship symmetry. A survey of the Geff for the various Adinkras, i.e., supermultiplets in the
ultra-multiplet family, we may define the maximal common symmetry for the whole family. As
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the relevant subgroup-chains of Spin(8) presented in figure 1 show, this ‘common denominator’
symmetry is Spin(4) × Z

e
2, manifest in the computational framework setup by [1]. This fact

explains why this framework can indeed be used to describe each supermultiplet in the family.
We are now also in position to resolve the apparent discrepancy between the degeneracies

listed in table 1 and the different counting one can obtain by inspecting the Adinkras in
table 2. For example, as mentioned above, all eight bosons in the (8|8)-dimensional Valise
supermultiplet (4.5) appear equivalent, which is emphasized by identifying them as spanning
the irreducible representation 8s of Spin(8). Thus, the operation of raising any particular
one of them is equivalent to raising any other one. Similarly, the seven ‘un-raised’ bosons
in the (7|8|1)-dimensional supermultiplet, with one bosonic node already raised, are also
equivalent. Raising any particular one of them is equivalent to raising any other. This way
of counting implies that there exist

(8
r

)
distinct although equivalent (8−r|8|r)-dimensional

supermultiplets, obtained by raising r bosonic (open) nodes from the Valise formation of
the ultra-multiplet (3.1)–(4.5). This degeneracy—

(8
r

)
distinct but equivalent (8−r|8|r)-

dimensional supermultiplets—is much larger than the one observed in table 1.
The resolution is in the fact that Spin(8) contains a continuum of Spin(4) subgroups all

of which are isomorphic by conjugation, and the analogous holds for all other subgroups. The
computational framework of [1], showcased in section 2, fixes a particular Spin(4) ⊂ Spin(8)

subgroup. This significantly limits the distinct albeit equivalent node-raising options. After
all, consider the fact that when two nodes are raised, we must identify these raised nodes with
A → (

∂−1
τ A

)
and B → (

∂−1
τ B

)
. This leaves the two triplets, Aα̂β̂ and Bα̂β̂ waiting to be

raised. These being triplets of Spin(4) × Z2, raising any one node, or two, at that point is
impossible within this basis without in fact raising either of the two entire triplets. On the other
hand, and within the same basis, we can describe the result of three nodes having been raised,
by, say, Aα̂β̂ → (

∂−1
τ Aα̂β̂

)
. Thus, although raising two nodes (8|8) → (6|8|2) and raising

three nodes (8|8) → (5|8|3) are both perfectly describable, it is not possible to describe the
transition (6|8|2) → (5|8|3), marked by ‘?’:

(A,B,A
α̂β̂

,B
α̂β̂

|ψ
K̂α̂

)
(A

α̂β̂
,B

α̂β̂
|ψ

K̂α̂
|A,B)

(A,B,B
α̂β̂

|ψ
K̂α̂

|A
α̂β̂

)
? (5.1)

without changing the Spin(4) × Z
e
2-basis in the process.

This proves that there exist many distinct but equivalent Spin(4)×Z
e
2-bases, and that more

than one may be needed when describing not just any one of the supermultiplets in the family,
but also the operation of changing one into another by means of the node-raising operation.

A complementary Spin(4) × Z
e
2-basis. Although definition 3.1 demonstrates the existence

of both an ultra-multiplet and a twisted ultra-multiplet, the explicit construction (2.1)–(2.3)
affords encoding both variants only through a Klein-flip, as discussed above.

However, we can use the triality of Spin(8) and embed Spin(4) × Z2 ⊂ Spin(8) so that

RD = (1, 1)0 ⊕ 1, 10 ⊕ (3, 1)0 ⊕ (1, 3)0 : D± ⊕ Dα̂β̂
± , (5.2a)

Rφ = (2, 2)+ ⊕ (2, 2)− : φK̂α̂ := ΦK̂α̂|, (5.2b)

Rψ = (2, 2)+ ⊕ (2, 2)− : ψK̂α̂ := ΨK̂α̂|, (5.2c)

where Dα̂β̂
± = ± 1

2εα̂β̂
γ̂ δ̂Dγ̂ δ̂

± , so that Dα̂β̂
± δβ̂γ̂ Dγ̂ δ̂

± = −‖D∗∗
±‖2δα̂δ̂ and Dα̂β̂

+ δβ̂γ̂ Dγ̂ δ̂
− = Dα̂β̂

− δβ̂γ̂ Dγ̂ δ̂
+ ,

and D± are labeled so as to accompany Dα̂β̂
± . With these, it is straightforward to prove that the

system of super-differential relationships
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D+ΦK̂α̂ = iΨK̂α̂, D+ΨK̂α̂ = (∂τΦK̂α̂), (5.3a)

Dα̂β̂
+ ΦK̂γ̂ = i(σ 3)K̂

L̂�α̂β̂
+ γ̂

δ̂ΨL̂δ̂ , Dα̂β̂
+ ΨK̂γ̂ = −(σ 3)K̂

L̂�α̂β̂
+ γ̂

δ̂(∂τΦL̂δ̂), (5.3b)

D−ΦK̂α̂ = ±iεK̂
L̂ΨL̂α̂, D−ΨK̂α̂ = ∓εK̂

L̂(∂τΦL̂α̂), (5.3c)

Dα̂β̂
− ΦK̂γ̂ = i(σ 1)K̂

L̂�
α̂β̂
− γ̂

δ̂ΨL̂δ̂ , Dα̂β̂
− ΨK̂γ̂ = −(σ 1)K̂

L̂�
α̂β̂
− γ̂

δ̂(∂τΦL̂δ̂), (5.3d)

�
α̂β̂
± γ̂

δ̂ := 2δ
[α̂
γ̂ δβ̂]δ̂ ± εα̂β̂

γ̂
δ̂ , so that 1

2εα̂β̂
ε̂ϕ̂�

ε̂ϕ̂
± γ̂

δ̂ = ±�
α̂β̂
± γ̂

δ̂ , (5.3e)

defines an (8|8)-dimensional supermultiplet of N = 8-extended supersymmetry, just as do
the equations (2.1)–(2.3). The choice of the upper/lower sign in relations (5.3c) provides
precisely the twist between the ultra-multiplet and the twisted ultra-multiplet. In retrospect, it

should be noted that D+, Dα̂β̂
+ , Dα̂β̂

− , D− may be corresponded to the 0-form, self-dual 2-form,
anti-self-dual 2-form and 4-form of Spin(4). Somewhat akin to the degeneracies in table 1, we
can change signs of these four operators in various combinations, providing a total of 24 = 16
sign-choices—precisely as within the system (3.6).

We thus conclude that the Spin(4) × Z
e
2-basis (5.2) and (5.3) captures the inequivalent

sign-choices in the quasi-projector system (3.6). On the other hand, since both the bosons and
the fermions are now ‘packaged’ as pairs of 4-plets, it is not possible to node-raise the bosons
nor node-lower the fermions one-by-one, but only node-raise or lower all eight. In turn, the
Spin(4)×Z

e
2-basis (2.1)–(2.3) is well suited to discuss the incremental node-raising operations

through ultra-multiplet family, but presents a way to twist between the ultra-multiplet and its
twisted variant only through a Klein-flip.

Generic background. Although Spin(8) and its unique triality seems to play a prominent role
in the present analysis, we now trace the existence of this computationally useful Spin(4)×Z

e
2-

basis to a generic feature of Spin(2n) groups, and in fact supermultiplets.
Every Spin(2n) group has two minimal spinor representations, Rs and Rc and a regular

SU(n) × U(1) subgroup, unambiguously defined by the decompositions:

Spin(2n): Rv= R
2n Rs≈ R

2n−1
Rc≈ R

2n−1

SU(n) × U(1): Rv→ C
n
+1 + (Cn)∗−1 Rs→

⊕
p even(∧p

C
n)qp

Rc→
⊕

p odd ∧p
C

n
qp

,
(5.4)

where Rv is the standard 2n-vector representation, and the U(1) charges qp are specified in
the appendix C. In the first row of (5.4), we ‘forget’ that Rs , Rc admit a complex structure and
are each other’s complex conjugate for n = 1 (mod 2), and admit a real versus pseudo-real
structure when n = 0 (mod 4) versus n = 2 (mod 4), respectively. Also, ∧p

C
n denotes the

vector space of complex p-forms in complex n-dimensional space.
For Spin(2n+1), the analogous regular subgroup is defined by

Spin(2n+1): Rv= R
2n+1 Rs≈ R

2n

SU(n) × U(1): Rv→ C
n
+1 + (Cn)∗−1 + R

1
0 Rs→

⊕n
p=0(∧p

C
n)qp

,
(5.5)

where the U(1) charges are determined by the embedding Spin(n) × U(1) ⊂ Spin(2n) ⊂
Spin(2n+1), as detailed in appendix C and differ from the conventions of [25].

The special unitary subgroup SU(n) itself has a special real subgroup, Spin(n) ⊂ SU(n),
defined by turning the ground field real and including the invariant positive-definite metric,
the Kronecker δ-symbol by choice of basis. This however permits, for even n, to further
decompose the (now real-valued!) middle-forms ∧n/2

R
n in (5.4) into the self-dual and the

anti-self-dual halves.
For the case at hand, we have the subgroup chain (see appendix C for details):
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Spin(8) ⊃ SU(4) × U(1) ⊃ Spin(4) × Z2 = SU(2)2 × Z2 (5.6a)

RQ = 8v → 4+1 ⊕ 4∗−1 → (2, 2)+ ⊕ (2, 2)−; (5.6b)

Rφ = 8s → 1−2 ⊕ 60 ⊕ 1+2 → (1, 1)0 ⊕ (3, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0; (5.6c)

Rψ = 8c → 4−1 ⊕ 4∗
+1 → (2, 2)− ⊕ (2, 2)+. (5.6d)

The U(1)-charges [25] are seen to agree with the values of the K̂-type indices without
modification on the fermionic superfields and component fields and on DK̂α̂ and QK̂α̂ , but
only upon a (mod) 2 reduction to ‘0’ in the middle row (5.6c), indicating the absence of the
K̂-type indices.

From the above analysis of the node-raising dependence of Geff , it is evident that for
each chromotopology, it is the Valise Adinkra which offers the maximal Geff . Guided by
the Geff-assignment (4.5), we assign the two irreducible spinor representations of a suitable
Spin-group to the bosons and fermions, respectively:

Span(φ1, . . . , φm) = Rs , Span(ψ1, . . . , ψm) = Rc, of

Geff = Spin(2N), for all N. (5.7)

This identification is made precise in a formal Fock-space construction:

Spin(2N ) Root Lattice Q − monomials comp. fields

êI �−→ QêI := Q0
1 · · ·Q0

I−1Q
1
I Q

0
I+1 · · · Q0

N = QI, (5.8a)

êI + êJ �→ QêI +êJ := Q0
1 · · · Q1

I · · · Q1
J · · ·Q0

N = QIQJ, (5.8b)(− 1
2 ,− 1

2 ,− 1
2 ,− 1

2 , . . . ,− 1
2

) �→ Q(0,0,0,0,...,0) |0〉 = |0〉 =: φ0,

(5.8c)(
+ 1

2 ,− 1
2 ,− 1

2 ,− 1
2 , . . . ,− 1

2

) �→ Q(1,0,0,0,...,0) |0〉 = Q1 |0〉 =: ψ1,

(5.8d)(
+ 1

2 , + 1
2 ,− 1

2 ,− 1
2 , . . . ,− 1

2

) �→ Q(1,1,0,0,...,0) |0〉 = Q1Q2 |0〉 =: φ[12],

etc. etc. etc. (5.8e)

where the Q’s in the Q-monomials (5.8) are always ordered lexicographically, say, resolving
the ambiguity stemming from the fact that the addition of root vectors is commutative, whereas
the product of different QI’s is anticommutative. In this construction,

Rv = Span((±1, 0, 0, . . . , 0), (0,±1, 0, . . . , 0), · · · , (0, . . . , 0,±1)) (5.9)

maps Rs ↔ Rc and so must contain the Q’s. Note however, that this distinguishes between
the ∂τ -less from the ∂τ -action of the Q’s, as in

Q1φ0 = ψ1,

Q1φ[23] = ψ[123],

etc.

⎫⎬⎭ versus

⎧⎨⎩
Q1ψ1 = i(∂τφ0),

Q2φ[23] = i(∂τψ3),

etc.
(5.10)

Given the familiar superspace realizations:

QI = i∂I + δIJθ
J∂τ , DI = ∂I + iδIJθ

J∂τ , (5.11)

it follows that

(0, · · ·, 0, +1, 0, · · ·, 0) �→ 1
2 (DI − iQI), (0, · · ·, 0,−1, 0, · · ·, 0) �→ 1

2 (DI + iQI),

(5.12)

where the nonzero entries are in the Ith position. Therefore, for all N ∈ N, each N-cubical,
a priori unconstrained and unprojected Valise supermultiplet (3.3) admits a Geff = Spin(2N)
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action specified by (5.7) and (5.9)–(5.12). As nodes are raised, Geff changes through the
subgroup chains of Spin(2N), not dissimilar to the discussion in section 4. Theorems 5.3 and
7.6 of [8] prove that all supermultiplets with the same chromotopology, however variously
‘hung’12, can be obtained from the Valise (3.3), as can their superfield representations.

In turn, when a supermultiplet is projected by a Z2 reflection corresponding to an operator
of the type (3.6), Geff reduces in rank by one: As discussed in section 3, each such multiplet
is annihilated by some projection operator such as �̂−

1234, implying that Q1Q2Q3Q4 � +H 2

when acting on this supermultiplet; equivalently, D1D2D3D4 � +H 2 on the superfield
realization (3.3). This permits expressing one Q and one D in terms of the others, and
so reduces dim(Rv) by two, and in turn, Spin(2N) → Spin(2N−2). Correspondingly,
as evident from the exponential mapping (5.8), the number of component (super)fields in
the Valise (3.3) reduces by a factor of 2: m = 2N−1 → 2N−2. After k such projections,
Spin(2N) → Spin(2(N−k)) and m = 2N−1 → 2N−k−1.

The maximum number of such projections is 1
2N , and can be achieved only for N = 0

(mod 8) [12]; in general, the number of projections is limited by

�(N) :=

⎧⎪⎪⎨⎪⎪⎩
0 for 0 � N < 4;⌊

(N − 4)2

4

⌋
+ 1 for N = 4, 5, 6, 7;

�(N−8) + 4 for N > 7, recursively,

(5.13)

which is closely related to the Radon–Hurwitz function [10]. In such cases Geff =
Spin(2N) → Spin(N) and m = 2N−1 → 2N/2−1—precisely the case for N = 8
ultra-multiplet, being the case-study in this paper. For these values of N, the minimal
supermultiplet—maximally projected from the one with N-cubical chromotopology—is most
compact. It is fascinating that precisely in these N = 0 (mod 8) cases, the doubly-even
binary linear block codes offer error-detecting and error-correcting encryption with minimal
information-theoretic Shannon entropy.

Finally, the general existence of the Spin(n) × SU(1) ⊂ Spin(2n) subgroup implies the
existence of a Spin(n) × Z

e
2-basis for all n. However, its utility in computational effectiveness

peaks for 2n = N � 8, in the sense that this basis permits a unified description of all
supermultiplets within same family, i.e., all supermultiplets with the same chromotopology
for the same N � 8 extended supersymmetry. For N > 8, this utility diminishes (see
appendix C).

6. The N = 8 super-Zeemann effect multiplex

The work of [13] introduced a class of models with a coupling of background magnetic fluxes
to worldline models with arbitrarily N extended supersymmetry. However, the formulation
presented there relied solely on the N = 1 superfield formulation. Since we are concentrating
on manifestly N = 8 supermultiplet formulations [9, 20] of the ultra-multiplet complex
in the current work, we have the opportunity to re-visit the previous work specifically for
ultra-multiplets.

12 A particular ‘hanging’ of a supermultiplet specifies one of the consistent assignments of the component fields’
engineering units. The term alludes to fixing the components with locally (within the network of connections defined
by supersymmetry transformation) maximal engineering units at corresponding heights and letting the supermultiplet
hang freely from these, akin to a hanging garden or a macramé [8].
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Following the approach of [13], we begin by introducing M pairs of ultra-multiplets. The
component fields of both members of a pair of �a = 0 ultra-multiplets can be denoted by(

Ap,Bp,A
p

α̂γ̂ , B
p

α̂γ̂

∣∣ψp

K̂α̂

)
and

(
Ãp, B̃p, Ã

p

α̂γ̂ , B̃
p

α̂γ̂

∣∣ψ̃p

K̂α̂

)
, (6.1)

where the indices p, q take on values 1, · · · ,M , counting the pairs (6.1). Next we introduce a
constant 2-form of background fluxes denoted by Fpq following the prescription given in [13]
and write

LFlux = Fpq

[
Ap(∂τ Ã

q) + Bp(∂τ B̃
q) + 1

4Aα̂γ̂p(∂τ Ã
q

α̂γ̂ ) + 1
4Bα̂γ̂ p(∂τ B̃

q

α̂γ̂ ) + iψ K̂α̂pψ̃
q

K̂α̂

]
,

(6.2)

where the supersymmetry invariance of this action demands that both ultra-multiplets be as
defined in equations (2.1)–(2.3). Analogous Lagrangians using the representation (5.2) and
(5.3) is as straightforward.

In the process of constructing the coupling of the �a = 0 ultra-multiplets to magnetic fluxes
as described by (6.2) we also have found it is possible to introduce pure mass terms and mixed
mass-flux terms for ultra-multiplet pairs with �a �= 0 as well. This circumstance owes to the
existence of a superinvariant of the form

LPair = mδpq

[
Ap(∂τ Ã

q) + Bp(∂τ B̃
q) + 1

4Aα̂γ̂p(∂τ Ã
q

α̂γ̂ ) + 1
4Bα̂γ̂ p(∂τ B̃

q

α̂γ̂ ) + iψ K̂α̂pψ̃
q

K̂α̂

]
.

(6.3)

for the �a = 0 case. Evidently, the Lagrangian (6.3) is a special case of (6.2), whereupon the
mass of all these fields, as introduced in (6.3), may be regarded as induced and controlled via
the coupling to a background flux.

By performing node lifts (2.5) on this expression a wide variety of bilinear actions may
be constructed for all choices of �a listed in table 1, one for every member of the family of
supermultiplets (4.5)–(4.10). Since the alternate representation of the ultra-multiplet and its
twisted variant (5.2) and (5.3) do not admit individual bosonic node raises without spoiling
the underlying Spin(4) × Z

e
2-basis, the task of constructing the most general model involving

the ultra-multiplet, the twisted ultra-multiplet and their various node-raised versions seems to
necessitate dropping the Spin(4) × Z

e
2 basis and using instead the ‘plain’ basis of (3.3).

7. Conclusions and outlook

In this paper, we have examined the family of minimal, (8+8)-dimensional off-shell
representations of worldline N = 8 extended supersymmetry; jointly furnishing an example of
the ‘root superfield’ formalism of [9]. These off-shell supermultiplets are faithfully depicted
by the Adinkras (4.5)–(4.10) [7, 8], and admit effective symmetry groups that depend on
the hanging: the particular assignment of the component fields’ engineering units (see
table 2). These groups of effective symmetries are all subgroups of the maximal one,
Spin(8)—exhibited by the Valise supermultiplet (4.5) and (4.10). In turn, these groups of
effective symmetries all have a common subgroup, Spin(4) × Z2, and this is the underlying
symmetry group of the particular basis used in the original construction of [1], which also
features a formally non-associative ‘extension’ Z2 → Z

e
2.

The supermultiplets in the ultra-multiplet family all have the E8 chromotopology [12, 14],
so their Adinkras (4.5)–(4.10) have the structure of the (Z2)

4-quotient of the 8-cube encoded
by the doubly-even binary linear block code e8. This induces a direct correspondence between
the so-called even/odd equivalence classes of E8 root lattices and the (un)twisted variants of
the ultra-multiplets (5.2) and (5.3); see appendix D.
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Along the way, we present the ultra-multiplet in terms of a super-differentially constrained
system of off-shell superfields (2.1)–(2.3) and (5.2) and (5.3). The end of appendix A provides
a proof that such a constrained system of superfields may be corresponded to each of the
trillions of inequivalent Adinkras found through the classification efforts of [8, 12, 14]. This
then provides a second superfield representation of every Adinkraic worldline supermultiplet,
complementing the combined construction of [8, 22].

Section 6 lists quadratic Lagrangians for the ultra-multiplet that provide the standard
kinetic terms, but also terms that mix two ultra-multiplets depending on the interaction with a
2-form of external, background fluxes. It should be possible to extend the methods of [9, 20]
so as to construct fully interactive, nonlinear σ -models for the supermultiplets in the ultra-
multiplet family, perhaps not unlike those presented for minimal supermultiplets of N = 4
extended supersymmetry in [24].

One of the most important messages we believe can be gleaned from our current study of
the ultra-multiplet is its implications for the symmetries that can occur in off-shell versions of
supersymmetric systems.

All of the multiplets discussed in this work provide realizations of N = 8 worldline
supersymmetry. Importantly however, the symmetry groups under which the eight
supercharges transform for most of them is not O(8) as might be naively expected from
the form of equations (1.1) alone. In fact, depending upon which set of raising is performed,
many distinct groups are found to provide the effective symmetry groups, Geff , under which
the supercharges transform.

One of the well-accepted tenets of conventional wisdom about supersymmetry
representation theory is that, in the context of Poincaré supersymmetry in d dimensions,
the N supercharges are ‘bundled’ into N minimal spinors of Spin(1, d−1), and provide a
representation of O(N ) so-called R-symmetry.

The present analysis of the ultra-multiplet suggests that this is not generally the case: on
the d = 1 worldline, the Lorentz symmetry reduces to Spin(1) = Z2, its minimal spinors
are one-dimensional, and the manifest O(8) symmetry of the supersymmetry algebra (1.1) is
indeed this R-symmetry of conventional wisdom. In all but the Valise supermultiplets (3.1)
and (4.10), this O(8) is broken to its various appropriate subgroups, as detailed in Tables 2
and 3 and figure 1.

Granted, our examples are all restricted to the one-dimensional worldline, but if this
qualitative behavior should persist in d > 1 dimensional theories, it would provide a route by
which to surmount the famous off-shell no-go theorem of Siegel and Roček [26], for d = 4.
In fact, one of the assumptions in the derivation of [26] was precisely the presence of an O(N )

symmetry. In turn, these authors indicate, in an oft overlooked portion of that paper, that
precisely the relaxing of this assumption offers a possibility of going off-shell. Finally, the
relaxation of this assumption of maximal R-symmetry is also the key for the combinatorial
explosion of supermultiplets proved in [12, 14].

Symmetry is in the eyes of the beholder.
by Lieh-tzu
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Appendix A. Supersymmetry transformation rules

References [8, 12, 14, 15] classify some trillions of supermultiplets each of which that can be
represented by an Adinkra such as (3.1) and which should be regarded merely as the ‘simpler’
building blocks from which to construct myriads of additional supermultiplets by the usual
technique of tensoring, symmetrizing and contracting.

Up to conventions, the LI matrices read off of the Adinkra (3.1) are the same ones
described in the work of [23]:

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8

L1 ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8

L2 −ψ2 ψ1 ψ4 −ψ3 ψ6 −ψ5 −ψ8 ψ7

L3 −ψ3 −ψ4 ψ1 ψ2 ψ7 ψ8 −ψ5 −ψ6

L4 −ψ5 −ψ6 −ψ7 −ψ8 ψ1 ψ2 ψ3 ψ4

L5 −ψ4 ψ3 −ψ2 ψ1 ψ8 −ψ7 ψ6 −ψ5

L6 −ψ6 ψ5 −ψ8 ψ7 −ψ2 ψ1 −ψ4 ψ3

L7 −ψ7 ψ8 ψ5 −ψ6 −ψ3 ψ4 ψ1 −ψ2

L8 −ψ8 −ψ7 ψ6 ψ5 −ψ4 −ψ3 ψ2 ψ1

(A.1)

or, alternatively:

L1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
L2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.2a)
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L4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
L5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.2b)

L7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
L8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.2c)

or, finally, using 11 = [1 0
0 1

]
, σ 1 = [0 1

1 0

]
, σ 2 = [0 −i

i 0

]
so (−iσ 2) = [0 −1

1 0

]
, and σ 3 = [1 0

0 −1

]
,

L1 = 11 ⊗ [11 ⊗ 11], L2 = σ 3 ⊗ [σ 3 ⊗ (−iσ 2)], (A.3a)

L3 = σ 3 ⊗ [(−iσ 2) ⊗ 11], L4 = (−iσ 2) ⊗ [11 ⊗ 11], (A.3b)

L5 = σ 3 ⊗ [σ 1 ⊗ (−iσ 2)], L6 = σ 1 ⊗ [11 ⊗ (−iσ 2)], (A.3c)

L7 = σ 1 ⊗ [(−iσ 2) ⊗ σ 3], L8 = σ 1 ⊗ [(−iσ 2) ⊗ σ 1]. (A.3d)

Noting the overall block-matrix structure of these matrices and that {L2, L2, L5}
and {L6, L7, L8} generate two separate su(2) algebras, a correspondence between

L1, {L2, L3, L5}, {L6, L7, L8}, L4, respectively, and D+, Dα̂β̂
+ , Dα̂β̂

− , D− in equations (5.2) and
(5.3) is strongly suggested.

Similar transformation relations and their explicit matrix representations can also be
obtained from (2.3), using the well-known relationship between the super-differential operators
DI and the supercharges QI (5.11):

QI = iDI + 2δIJ θ J∂τ , DI = −iQI + 2iδIJ θ J∂τ , (A.4)

we easily obtain, for example,
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DK̂α̂A = i(σ 3)K̂
L̂ΨL̂α̂ ⇒ A

[− iQK̂α̂ + 2iδK̂L̂δα̂β̂θ L̂β̂
] = i(σ 3)K̂

L̂ΨL̂α̂, (A.5)

⇒ +
[− iQK̂α̂ + 2iδK̂L̂δα̂β̂θ L̂β̂

]
A| = i(σ 3)K̂

L̂ΨL̂α̂|, (A.6)

⇒QK̂α̂A = −(σ 3)K̂
L̂ψL̂α̂, (A.7)

where ‘|’ denotes setting θ I → 0, which is how the additional, θ -dependent terms in (A.4) and
in (A.6) vanish by (A.7). The ‘flip’ DA = A[−iQ+· · ·] in (A.5) reflects the fact the D’s span
left vector fields whereas the Q’s span right vector fields in superspace [16]. In this manner,
the system (2.3) produces:

QK̂α̂A = −(σ 3)K̂
L̂ψL̂α̂, QK̂γ̂ Aα̂β̂ = −[δγ̂ [α̂ψK̂β̂] + �̃εα̂β̂γ̂

δ̂ψK̂δ̂

]
, (A.8a)

QK̂α̂B = −(σ 1)K̂
L̂ψL̂α̂, QK̂γ̂ Bα̂β̂ = −εK̂L̂

[
δγ̂ [α̂ψL̂β̂] − �̃εα̂β̂γ̂

δ̂ψL̂δ̂

]
, (A.8b)

QK̂α̂ψL̂γ̂ = − i
[
δα̂γ̂ (σ 3)K̂L̂(∂τA) + δK̂L̂(∂τAα̂γ̂ ) + δα̂γ̂ (σ 1)K̂L̂(∂τB) + εK̂L̂(∂τBα̂γ̂ )

]
. (A.8c)

Owing to the connectivity of the super-differential constraints (2.3), the a priori
unconstrained superfields in (A, B, Aα̂β̂ , Bα̂β̂ |ΨK̂α̂) contain no other component field than
what appears in the final transformations such as (A.8). To wit,

(1) Equations (2.3) provide a supersymmetric mapping between {A, B, Aα̂β̂ , Bα̂β̂} and {ΨK̂α̂}.
This map is of maximum rank and is supersymmetric since the D’s anticommute with
the Q’s, and so provides a supersymmetric isomorphism, Span(A, B, Aα̂β̂ , Bα̂β̂ ) ≈
Span(ΨK̂α̂).

(2) Since ∧rθ -component fields in a superfield X are defined by evaluating (DI1 · · · DIr X)

at θ = 0, equations (2.3a) and (2.3b) imply that the ∧r+1θ -component fields within
A, B, Aα̂β̂ , Bα̂β̂ are all ∧rθ -component fields within ΨK̂α̂ , for r � 0.

(3) In turn, equations (2.3c) imply that the ∧r+1θ -component fields within ΨK̂α̂ are all τ -
derivatives of the ∧rθ -component fields within A, B, Aα̂β̂ , Bα̂β̂ , for r � 0.

(4) It follows that all component fields within the superfield multiplet (A, B, Aα̂β̂ , Bα̂β̂ |ΨK̂α̂)

are either the lowest components listed in equations (2.2) or their τ -derivatives.

The analogous applies to the super-differential system (5.2) and (5.3).
This proof in fact applies to all Superfield Adinkras: wherein every node in a given

Adinkra is assigned an a priori unconstrained and unprojected superfield, and wherein every
edge defines a pair of first-order super-differential relations akin to the pairs exhibited in
equation (2.3) or (5.3). This then provides a superfield representation of every one of the
trillions of Adinkras and adinkraic supermultiplets classified by [12, 14], and is in addition to
the combined construction of [8, 22].

Appendix B. Supermultiplet automorphisms

Several distinct notions of equivalence between off-shell supermultiplets in general have
been used in the literature, and it behooves to delineate the isomorphisms underlying such
equivalences in our present study—and to highlight the differences between them.

In general, every supermultiplet is a triple, (Q : Rφ|Rψ), where Rφ and Rψ are the
vector spaces generated respectively by bosonic and fermionic component fields over a
given spacetime and their spacetime derivatives, and a graded action of the supercharges,
Q, generating the supersymmetry transformations between Rφ and Rψ and their derivatives.
A general supersymmetric model will involve several supermultiplets, each of which having
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its own pair (Rφ|Rψ) equipped with a separate Q-action on this pair—but with the Q operators
themselves being common to all supermultiplets.

A field redefinition is a transformation of the pair (Rφ|Rψ), and is an inner transformation
of each supermultiplet separately: the component fields of any supermultiplet can be redefined
without any change induced in any other supermultiplet. By contrast, a transformation of the
collection {Q1, . . . ,QN }, such as a permutation or a linear combination, is common to all
supermultiplets considered in a given model and so is an outer transformation for all of the
involved supermultiplets: they are all affected by such a transformation.

For a transformation—inner or outer—of a supermultiplet to be an automorphism, its
result must be indistinguishable from the original. It is this, inherently contextual nature
of ‘(in)distinguishability,’ that induces the various notions of (in)equivalence between two
supermultiplets, and so renders all classification attempts just as context-sensitive.

The comparison of chiral and twisted-chiral supermultiplets in (2, 2)-supersymmetry in
(1+1)-dimensional spacetime (worldsheet) provide a well-known example [24]: in a certain
basis of super-differential operators, these two complex superfields, � and � respectively,
may be defined as satisfying the super-differential constraints

[D1 − iD2]� = 0 = [D3 − iD4]�, vs. [D1 − iD2]� = 0 = [D3 + iD4]�. (B.1)

Clearly, the transformation D4 → −D4 (and correspondingly Q4 → −Q4) swaps �↔�.
This being a bijection, it provides an isomorphism that renders each chiral superfield �

equivalent to a twisted-chiral �, and vice versa. Therefore, any model and action functional
constructed with only twisted-chiral superfields can equally well be constructed with only
chiral superfields, and there can be no physically observable distinction between them.
However, �↔� is an outer automorphism and [24] shows that it is possible to construct
a model and an action functional that indecomposably mixes � with �, giving rise to target
space geometries and field theory dynamics not achievable using only one or only the other
type of superfields. The most celebrated consequence of the �↔� isomorphism between
certain models with an unequal number of �’s and �’s is mirror symmetry [9, 27–30]. We
thus refer to the chiral and twisted chiral superfields as equivalent (isomorphic), but usefully
distinct.

Suppose now that the permissible action functionals were restricted to being at most
bilinear in the supermultiplets. It is not hard to show that there exists no bilinear action
functional mixing the chiral and twisted-chiral superfields indecomposably. This removes
the means to physically distinguish one from the other supermultiplet, physical distinction
being predicated on the observables in the theory and their dynamics—all of which depend
on the choice of the action functional. Thus, whatever reasons that might have forced us to
restrict action functionals to be bilinear would also render chiral and twisted chiral superfields
indistinguishable—though they are not so in general.

In a qualitatively similar but technically subtler sense, there exist 30 distinct adinkraic
(8|8)-dimensional supermultiplets of N = 8 worldline supersymmetry, with the E8

chromotopology [12]: of the 8! column permutations in the four binary 8-vectors at the right-
hand side of equation (3.6), many simply induce a permutation in the complete collection of
binary linear combinations of the generators. As this complete collection is in fact the code,
such a column permutation turns out to be a symmetry of the code. The dimension of the
permutation symmetry of the e8 code being 1344, we are left with 8!

1344 = 30 permutation
equivalent but distinct e8 codes, and so also 30 equivalent but distinct projection systems
(3.6), Adinkras (3.1), and (8|8)-dimensional supermultiplets of N = 8-extended worldline
supersymmetry.
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As discussed above, half of these are equivalent to each other by a linear field redefinition
and we call these the ‘ultra-multiplets,’ as are the other half which we call the ‘twisted ultra-
multiplets’. Indeed, 8 × 8 permutation matrices are in fact orthogonal, but half of them have
determinant −1, the other half +1. While the second half therefore do form a subgroup of
Spin(8), the full set (8! = 40, 320) of 8 × 8 permutation matrices—and therefore also those
30 that transform one e8 code into another—form a discrete subgroup of the Pin(8) extension
of Spin(8).

In turn, Spin(8) is unique in also possessing the well-known triality, which cycles
8v, 8s and 8c. Together with the Pin(8)/Spin(8) = Z2 reflections, this forms the S3 outer
automorphism of Spin(8), and it is possible to define the ‘ultra-multiplet’ to include this full
S3-extension of Spin(8), denoted Spin(8) # S3, as its maximal group of symmetries. As
pointed out, the particular assignment (4.3) was made up to this triality; any other assignment
would serve just as well.

The various equivalences between distinct (twisted) ultra-multiplets may thus be layered:

(1) All (8|8)-dimensional supermultiplets of N = 8 supersymmetry (=‘ultra-multiplets’)
are regarded equivalent: this level of (in)distinction corresponds to the situation where
we consider a model constructed from perhaps several copies of the identically same
Valise ultra-multiplet. In this case, a particular choice of a basis together with some
of the choices made in specifying equations (2.1)–(2.3) and/or the assignments (4.3)
will have been employed, but there would be no physically observable consequence of
changing any and all of those by means of a Spin(8) # S3-transformation; no two distinct
descriptions could result in any difference in the action functional—and so also amongst
the observables of the system, so that all distinct descriptions would have to be regarded
as physically equivalent.

(2) Ultra-multiplets are equivalent up to the triality of Spin(8), cycling the assignment of
RQ, Rφ and Rψ to its three distinct irreducible eight-dimensional representations. Now,
it is logically impossible to construct models with any two such distinct types of ultra-
multiplets, since the supersymmetry of the model must be generated by Q’s that are
common to all supermultiplets. Thus, RQ must be common to the Q-action within all
multiplets, which effectively rules out the possibility of mixing ultra-multiplets that differ
by the triality of the assignment (4.3). However, the triality of Spin(8) is involved in
identifying Geff of non-Valise ultra-multiplets:

(I) with Rφ decomposing in the manner of the sequence (4.4), as considered herein,
(II) with Rψ decomposing in the manner of the sequence (4.4), as would be appropriate

for the ‘dark side’ of the ultra-multiplet family, including the incremental (fermionic)
node-raises of the Adinkra (4.10),

(III) with RQ decomposing in the manner of the sequence (4.4), as in (5.2) and (5.3).

While it is logically possible to mix the ultra-multiplets of type-I and type-II, those of
type-III, as in equations (5.2) and (5.3), cannot be mixed with either type-I or type-II, but
provide a separate, alternate description—equipped with a simple sign representation of
‘twisting’ in equation (5.3c).

(3) Ultra-multiplets, now with a fixed RQ = 8v assignment, are equivalent up to the reflections
in Pin(8)/Spin(8) = Z2. This swaps Rφ and Rψ as its two distinct eight-dimensional
spinor irreps, one spanned by vectors in the root lattice that have an even number of
negative coordinates, the other with an odd number. In the type-III description (5.2) and
(5.3), this binary choice is represented the sign-choice in equation (5.3c). From the lessons
of [24], we expect that an action functional mixing indecomposably the ultra-multiplet
and its twisted variant would have to be a nonlinear (and/or gauged) σ -model, the target
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space of which would then admit a geometry not possible in any nonlinear and/or gauged
σ -model constructed from only one of the two types.
While a demonstration of the existence and explicit construction of such an action
functional remains a tantalizing open problem, it is amusing to note that a bilinear
mixing term cannot be Geff = Spin(8)-invariant: to see this, note that Rφ = 8s in the
ultra-multiplet, while Rϕ = 8c in the twisted ultra-multiplet, while the fermions have the
opposite assignments. Since 8s ⊗ 8c �⊃ 11 in Spin(8), there can be no Spin(8)-invariant
bilinear mixing term suitable for a Lagrangian.

(4) Thirty
(
30 = 8!

1344

)
distinct ultra-multiplets are distinguished by distinct though Q-

permutation equivalent E8 topology. This implies the existence of a hierarchy of
(presumably nonlinear and/or gauged) σ -models, indecomposably mixing between 2 and
30 of these variant (twisted) ultra-multiplets, and thus a class of target-space geometries
not otherwise constructible. Thus, if no such action functionals can be constructed, the
equivalences generated by construction 4.2 of [14] are indeed physical equivalences;
otherwise, these 30 incarnations of the (twisted) ultra-multiplet are all usefully distinct.

Remark: The logical possibility of such a ‘useful distinction’ implies that the total number of
distinct supermultiplets increases from ∼1012 without such distinction, to somewhere ∼1047

with such distinction, and the number of usefully distinct models (‘most general’ types of
action functionals given a selection of supermultiplets) of N � 32-extended supersymmetry
to a combinatorially staggering number, somewhere ‘log-log-halfway’ between Googol and
Googolplex. Of course, most considered models also admit continuous parameters.

Appendix C. Bases for other values of N

The effective symmetry of adinkraic supermultiplets essentially depends on three factors: (1)
the number of supercharges, N, acting within the supermultiplet, (2) the degree, k, of the
(Z2)

k-quotient chromotopology of the supermultiplet and (3) the hanging, i.e., engineering
unit assignments of its component fields. We focus herein on the minimal supermultiplets for
given even N. These are maximally (Z2)

k-projected, with k given by equation (5.13), which
simplifies for even N:

�(N) =

⎧⎪⎨⎪⎩
N

2
, for N = 0 (mod 8),

N

2
− 1, for N = 2, 4, 6 (mod 8),

(C.1)

resulting in

dim(min. supermultiplet) =
{(

2
N
2 −1

∣∣2 N
2 −1

)
, for N = 0 (mod 8),(

2
N
2

∣∣2 N
2
)
, for N = 2, 4, 6 (mod 8),

(C.2)

with the two powers of 2 denoting the numbers of bosonic and fermionic degrees of freedom,
respectively. The dimension of the minimal spinor representations of Spin(2n) being 2n−1,
which suggests that

Geff(min. supermultiplet) ⊆
{

Spin(N), for N = 0 (mod 8),

Spin(N+2), for N = 2, 4, 6 (mod 8).
(C.3)

With these assignments, note that the defining n-dimensional vector representation of Spin(n)

must provide the mapping nv : (2n−1)s↔(2n−1)c and in agreement with the conditions
(4.2). For N = 0 (mod 8), Span(Q1, . . . , QN) precisely suffices, but in the N = 2, 4, 6
(mod 8) cases, either the (N+2)-component vector representation would have to be spanned by
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a suitable subset of {Q1, . . . , QN, D1, . . . , DN }, or Geff ⊆ Spin(N) ⊂ Spin(N+2), restricting
from (C.3).

While this suggests generalizations of the present results to the N = 2, 4, 6 (mod 8)

cases, we defer their discussion to a future opportunity, focus on N = 0 (mod 8) cases and
fix n := N/2.

The U(1) → Z
e
2 charges The U(1) charge-assignment for the subgroup SU(n) × U(1) ⊂

Spin(2n) in equations (5.4) and (5.5) follows the pattern:

(22n − 1)co-spinor

(2n)vector

(22n − 1)spinor

n
0 q0

n+1

n∗−1

n
1 q1

n∗−1

n+1
n
2 q2

n+1

n∗−1

n
3 q3

n∗−1

n+1
n
4 q4

· · · (C.4)

whereby

qp = q0 + p. (C.5)

Since U(1) ⊂ Spin(2n) and the whole array is a complete representation of Spin(2n), the
trace of the U(1) generator must vanish, i.e., the charges must add up to zero:

0 =
n∑

p=0

qp = (n+1)q0 +

(
n + 1

2

)
, ⇒ q0 = −1

2
n, (C.6)

and the qp range
{− n

2 ,− n−2
2 , . . . , + n2

2 , + n
2

}
—exactly as do the (angular momentum) Ĵ3

eigenvalues in quantum mechanics! In fact, the charges add up to zero both separately in
the top and the bottom row of (C.4), owing to the identities∑
p even

(
p − 1

2
n

)(
n

p

)
= 0, and

∑
p odd

(
p − 1

2
n

)(
n

p

)
= 0, (C.7)

in accord with the fact that the top row of (C.4) by itself displays the SU(n)×U(1) ⊂ Spin(2n)

decomposition of the Rs representation of Spin(2n), and the bottom row displays the
corresponding decomposition of Rc, wherein the trace of U(1) ⊂ Spin(2n) must be zero.

In turn, we can represent the spinors and the co-spinors of Spin(2n) in its root lattice
as spanned by n-vectors

( ± 1
2 , . . . ,± 1

2

)
with, respectively an even and an odd number of

negative components. These are easily partitioned into
(
p

2

)
such vectors with p negative signs,

and qp in (C.4) are then simply the sums of components for each such partition.
When passing to the real subgroup Spin(n) × Z2 = �e(SU(n) × U(1)), the complex

distinction between n and n∗ is lost, they become interchangeable in the diagram (C.4).
Thus, for n = 0 (mod 4), we may shift (the remnant of) the U(1) charge so that

n
0 0

n+1

n−1

n
1 +1

n+1

n−1
n
2 0

n+1

n−1

n
3 +1

· · ·
n

n / 2 0

· · ·
n

n − 3 −1

n−1

n+1
n

n − 2 0

n−1

n+1

n
n − 1 −1

n−1

n+1
n
n 0

(C.8)

The n × n metric of the real subgroup Spin(n) × Z2 = �e
(

SU(n) × U(1)
)

induces the
decomposition of

(
n

n/2

)
0

into its self-dual and anti-self-dual parts, and the entire sequence
(C.8) exhibits a left–right reflection symmetry across the middle. The so-shifted U(1) charge
is the assignment used in equations (5.6b) and (5.6d), which agrees with the labeling carried
by the K̂-type indices and corresponds to what we denoted above as Z

e
2, and also with the
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so-denoted ‘charges’ appearing in table 3 and figure 1. This shift can also be traced through
the exponential mapping (5.8).

Particular cases. For the N = 8 ultra-multiplet, table 3 shows that the basis of [1] corresponds
to the decomposition

RQ = (2, 2)− ⊕ (2, 2)+

Rφ = (1, 1)0 ⊕ (3, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0

Rψ = (2, 2)+ ⊕ (2, 2)−

⎫⎬⎭ of Spin(4) × Z
e
2. (C.9)

For N � 8, such decompositions may be less useful, since the zig-zag diagram (C.8) will
not be able to accommodate the raising of an arbitrary number of nodes. As an example,
consider the minimal, (128|128)-dimensional supermultiplet of N = 16 extended worldline
supermultiplet:

RQ = 8− ⊕ 8+

Rφ = 10 ⊕ 280 ⊕ 35+
0 ⊕ 35−

0 ⊕ 280 ⊕ 10

Rψ = 8+ ⊕ 56+ ⊕ 56− ⊕ 8−

⎫⎬⎭ of Spin(8) × Z
e
2. (C.10)

This may be obtained from the unprojected, (215|215) = (32,768|32,768)-dimensional
N = 16 supermultiplet, via eight successive, commuting Z2-projections and permits the
description of raising 1, 2, 28, 29, 30, . . ., but not 3, 4, . . . , 27 nodes, etc—without changing
to a basis wherein the Spin(8) × Z

e
2 is manifestly broken to a subgroup.

We pause to note that the numbers in the N = 16 decomposition (C.10) will seem
extremely familiar to aficionados of supergravity theory, reminding of the multiplicities of
bosonic (top row) and fermionic (bottom row) helicity states in 4D, N = 8 supergravity.

However, with a total of N = 32 supercharges, the worldline shadow of the a priori
unconstrained and unprojected supermultiplet of 4D N = 8 has 231 + 231 components, and
admits 2 × 85 = 170 distinct13 (Z2)

16-projections [12, 14]. This leaves 170 distinct 215 + 215-
component supermultiplet classes—each of which admitting a combinatorially enormous
number of distinct ‘hangings,’ i.e., distinct possible assignments of engineering units to
the component fields. The simplest of these, the Valise hangings of such supermultiplets
form only two equivalence classes that may be parametrized in a fashion straightforwardly
generalizing the ultra-multiplet (2.1)–(2.3), complete with �̃ = ±1 labeling the two
equivalence classes. This then affords an organization of this combinatorially enormous
family of supermultiplets in the ‘root superfield’ manner [9], as proven in [8]. This Valise
hanging of the (215|215) = (32,768|32,768)-component worldline N = 32-supersymmetric
supermultiplet has the component fields form

RQ = 16− ⊕ 16+

Rφ = 10 ⊕ 1200 ⊕ 18200 ⊕ 80080 ⊕ 6435+
0 ⊕ 6435−

0 ⊕ 80080 ⊕ 18200 ⊕ 1200 ⊕ 10

Rψ = 16+ ⊕ 560+ ⊕ 4368+ ⊕ 11440+ ⊕ 11440− ⊕ 4368− ⊕ 560− ⊕ 16−
(C.11)

of Spin(16) × Z
e
2, in a straightforward generalization of the ultra-multiplet parametrization

in [1].
Indeed, the numbers in the decomposition (C.11) look nothing like the multiplicities in the

familiar 4-dimensional,N = 8 supergravity. This is simply because the decompositions (C.9)–
(C.11) are based on the symmetry group that is, for each N, common to a large class of different
‘hangings’ of the described worldline supermultiplets, many of which most probably do not

13 These supermultiplets have 85 distinct chromotopology types, each with two inequivalent choices of edge-dashing
[12, 14].
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have a dimensional oxidization to four-dimensional spacetime supermultiplets. Therefore,
the Spin(n/2) × Z

e
2-basis described herein and implicit in the decompositions (C.9)–(C.11)

is most certainly not ‘aligned’ with an embedded 4-dimensional Lorentz group, Spin(1, 3),
in max(Geff). Furthermore, unlike ∂τ on which Spin(1) = Z2 acts trivially, Spin(1, 3)

acts far from trivially on the energy-momentum 4-vector in four-dimensional spacetime; this
forces a modification in the 4-dimensional spacetime analogs of equation (4.2), so also in the
assignments (4.3), and thereby the very definition of Geff itself.

Appendix D. The E8 algebra, root lattice bases, code and Adinkra chromotopology

This appendix collects a telegraphic review of the correspondences between (1) the E8

algebra, (2) root lattice bases, (3) e8 doubly-even binary linear block codes and (4) adinkraic
supermultiplets with E8 chromotopology [12, 14, 31]. Information on the E8 algebra and root
lattices may be found in many texts on Lie algebras (see, e.g., [32, 33] and the online summary
[34]). The correspondence between the E8 root lattice bases and the e8 binary code follows
the so-called ‘Construction A’ [35].

The E8 algebra, familiar from its many diverse applications in mathematical physics, has a
spin(16) maximal, regular subalgebra. With respect to this, the E8 adjoint representation
decomposes as 248 → 120 ⊕ 128, where 120 ∼ Span(J[ab], a, b = 1, . . . , 16) and
128 ∼ Span(QA = Q

†
A,A = 1, . . . , 128), satisfying:

[J[ab], J[cd]] = δadJ[bc] − δacJ[bd] − δbdJ[ac] + δbcJ[ad], (D.1a)

[J[ab],QA] = 1
2 (�[a|)AB(�|b])B

CQC, [QA,QB] = (�[a|)AC(�|b])C
DδDBJ[ab], (D.1b)

where (�a)A
B are 16 suitable 128 × 128 Dirac matrices, δab the defining metric of spin(16),

and δAB the metric on its 128-dimensional real spinor representation.

The E8 root lattice, �E8 , of the E8 algebra (D.1) consists of the eight mutually commuting
Cartan elements {J[12], J[34], . . . , J[1516]}, represented as all coinciding with the point of origin
in an 8-dimensional Euclidean space. The remaining 112 elements among {J[ab], a, b =
1, . . . , 16} then correspond to integral 8-tuples that are permutations of (±1,±1, 0, . . . , 0).
The QA in turn correspond to half-integral 8-tuples of the form

(± 1
2 , . . . ,± 1

2

)
—with either an

even or an odd total number of positive/negative components—corresponding to a choice of
the even/odd E8 class of lattices, �+

E8
versus �−

E8
. The Euclidean length of all 240 root-vectors

in both �+
E8

versus �−
E8

is
√

2, and the lattices �+
E8

,�−
E8

are in fact isomorphic.
A convenient basis for �+

E8
—one of many—consists of the 8-tuples listed here as the rows

of the matrix:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

α2

α3

α4

α5

α6

α7

α8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
−1

2
−1

2
−1

2
−1

2
−1

2
−1

2
+1

2

−1 1 0 0 0 0 0 0

0 −1 1 0 0 0 0 0

0 0 −1 1 0 0 0 0

0 0 0 −1 1 0 0 0

0 0 0 0 −1 1 0 0

0 0 0 0 0 −1 1 0

1 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

←→

α1

α2

α3

α4

α5

α6

α7

α8

(D.2)

where a link between αi and αj in the Dynkin diagram to the right indicates αi · αj = −1,
and the absence of a link indicates αi · αj = 0. Then, �+

E8
is the collection of integral
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multiples of {α1, . . . , α8}, and �−
E8

is obtained by changing the sign in the entries in any odd
number of columns of the 8 × 8 matrix formed by the eight row-vectors (D.2).

An integral-length rescaling. The �E8 lattice may be effectively rescaled via left-multiplication
of the 8 × 8 matrix formed by the eight row-vectors (D.2) by S = (σ1 + σ3) × 114:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 − 1

2 − 1
2 − 1

2 − 1
2 − 1

2 − 1
2

1
2

−1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 0
1 1 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 −1 0 −1 0 0 −1
0 −2 0 0 0 0 0 0

−1 1 1 1 0 0 0 0
0 0 0 −2 0 0 0 0
0 0 −1 1 1 1 0 0
0 0 0 0 0 −2 0 0
0 0 0 0 −1 1 1 1
2 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(D.3)

The row vectors in the resulting matrix span a lattice isomorphic to �+
E8

but now the minimal

non-zero vectors have Euclidean length 2. Thus, the Cartan matrix, Aij := 2 (αi ,αj )

(αi ,αi )
, computed

from (D.3) equals the one computed from (D.1). The binary, i.e., (mod 2) reduction of the
matrix (D.3) becomes⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 1 0 0 1
0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−→

⎡⎢⎢⎣
0 1 1 0 1 0 0 1
1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1

⎤⎥⎥⎦ =:

⎡⎢⎢⎣
b1

b2

b3

b4

⎤⎥⎥⎦ (D.4)

the rows of which generate the doubly even binary linear block code e8, which consists
of all binary linear combinations �b := βibi , where βi ∈ {0, 1} and bitwise summation is
implicit. All 16 so-obtained binary 8-vectors have a doubly even Hamming weight, i.e., the
sum of 1’s adds up to 0 (mod 4); they are all mutually orthogonal, �b · �b′ = 0 (mod 2) and
self-orthogonal, �b · �b = 0 (mod 2).

From code to a lattice basis: conversely, given a set of generators of the doubly even code
e8, we reconstruct a �E8 -basis by judiciously toggling the sign of a few bits so the 8-vectors
become mutually orthogonal without the (mod 2) reduction, and then add three 8-vectors: each
with a single non-zero ±2 entry14, so that the Euclidean scalar product of each row-vector

14 The (mod 2) reduction of each such vector is the binary null-vector, contained in every binary code.
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with both its predecessor and its successor is −2, and zero otherwise. For example,⎡⎢⎢⎣
1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
1 0 1 0 1 0 1 0

⎤⎥⎥⎦ −→

⎡⎢⎢⎣
1 1 1 −1 0 0 0 0
0 0 −1 −1 −1 1 0 0
0 0 0 0 1 1 1 −1
−1 0 1 0 −1 0 1 0

⎤⎥⎥⎦

−→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 −1 0 0 0 0
0 0 0 2 0 0 0 0
0 0 1 −1 1 1 0 0
0 0 0 0 0 −2 0 0
0 0 0 0 1 1 1 −1
0 0 0 0 0 0 −2 0
−1 0 1 0 −1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (D.5)

Finally, we add the eighth 8-vector with a single non-zero ±2 entry so that its Euclidean scalar
product with either the 3rd or 5th row vector is −2, but vanishes with all other row vectors:

⎡⎢⎢⎣
1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
1 0 1 0 1 0 1 0

⎤⎥⎥⎦ −→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 −1 0 0 0 0
0 0 0 2 0 0 0 0
0 0 −1 −1 −1 1 0 0
0 0 0 0 0 −2 0 0
0 0 0 0 1 1 1 −1
0 0 0 0 0 0 −2 0
−1 0 1 0 −1 0 1 0
0 0 0 0 0 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·S/2−→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 −1 0 0 −1 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 0 −1 −1
− 1

2 − 1
2

1
2

1
2 − 1

2 − 1
2

1
2

1
2

0 0 0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (D.6)

After toggling the signs of the elements in the 2nd, 3rd, 4th and 8th columns, this is a row-
and column-permutation of the �+

E8
-basis (D.2); by toggling back the sign of the element in

the 2nd column, say, one obtains a �−
E8

-basis. As noted above, all �+
E8

and �−
E8

lattices are
isomorphic as lattices. The above construction of a �E8 -basis proceeds with a clear aim to
recover a lattice basis to correspond to the Dynkin diagram (D.2). It would be interesting to
prove that the ultimate result, the generation of an E8-lattice from the e8 code, does not depend
on the choices made herein; this is however beyond the scope of this case study.

Ultra-multiplets. On the other hand, the exponential map (5.8) corresponds a quotient of the
8-cube by the binary code e8 to the projection of the a priori unconstrained and unprojected
(128|128)-dimensional Valise supermultiplet of N = 8 worldline supersymmetry, with the
chromotopology of the 8-cube, I 8, and to the ultra-multiplet (2.1)–(2.3) with the E8 = I 8/e8

chromotopology [12, 14]. That is, the exponential map (5.8) assigns to every binary 8-vector
�b ∈ e8 a Q-monomial, Q

�b, the action of which on every component field of the ultra-multiplet
is equivalent to H

1
2 wt(�b).
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Throughout (D.2)–(D.6), the Ith column in each matrix corresponds to the Ith supercharge,
and toggling the sign of the matrix elements in (D.2) and (D.3) within any such column may be
corresponded to changing the sign of QI . In turn then, toggling the sign in any odd number of
columns corresponds to toggling the sign of an odd number of supercharges, which in turn has
the effect of toggling between the ultra-multiplet family (2.1)–(2.3) and its twisted variant—
the Klein-flip of equations (2.1)–(2.3), or alternatively, toggling between the two sign options
in equations (5.2) and (5.3). The rows in the right-hand side matrix (D.3) itself thus correspond
to Q-monomials the action of which is equivalent to H

1
2 wt(�b) upon each component field of

the ultra-multiplet: the rows with single ±2 entries satisfy this trivially, since ±(QI)
2 = ±H

already—corresponding to the fact that such rows reduce, (mod 2), to null vectors in the binary
code e8.

In this way, the �±
E8

-lattice basis matrices (D.2) and (D.3) themselves are seen to encode
the quotient chromotopology of the ultra-multiplet, complete with an assortment of various
sign choices in the lattice vectors corresponding to choices of edge dashing, and together with
a precise correspondence of the two equivalence classes of these sign choices.

We have hereby exhibited the correspondences:

E8

Λ+
E8

-basis

Λ−
E8

-basis

e8λ λ

(A, B, Aα̂β̂, Bα̂β̂ |ΨK̂α̂)

(AK̂ α̂|Ψ+, Ψ+
α̂β̂

, Ψ−, Ψ−
α̂β̂

)

(D.7)

where the dashed arrows denote twist-isomorphisms: λ between lattices, λ̃ between
superfields. Again, it would be interesting to see if the presented reconstruction of lattice
bases may in fact be extended to a basis-independent reconstruction of abstract lattices. This
would provide a direct relationship between the abstract E8 lattices and the ultra-multiplet
Adinkras, supermultiplets and the superfield Adinkras on the far right. Such a comprehensive
and rigorous study is however well beyond our present scope.

The difference between an ultra-multiplet and its twisted variant is virtually identical to
that between the chiral and twisted-chiral supermultiplets of worldsheet (2, 2)-supersymmetry
[24]. In particular, the isomorphism λ̃ represents the fact that every model constructed with only
ultra-multiplets can equally well be recast in terms of twisted ultra-multiplets. However, it may
well be possible to construct a model that mixes both supermultiplets in an indecomposable
way. The difference between chiral and twisted chiral supermultiplets was indeed usefully
employable in this sense and led to a realization of ‘almost product geometries’ in the target
space [24]. We should thus like to conjecture that—unlike the purely quadratic Lagrangians
(2.4)–(2.7), (6.2) and (6.3)—the most general, fully interactive nonlinear and/or gauged σ -
models do mix the ultra-multiplets and twisted ultra-multiplets in a nontrivial, indecomposable
and ultimately useful way.
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[26] Siegel W and Roček M 1981 On off-shell supermultiplets Phys. Lett. B 105 275–7
[27] Greene B R and Plesser M R 1990 Duality in Calabi-Yau moduli space Nucl. Phys. B 338 15–37
[28] Morrison D R and Plesser M R 1996 Towards mirror symmetry as duality for two dimensional Abelian gauge

theories Nucl. Phys. Proc. Suppl. 46 177–86 (arXiv:hep-th/9508107)
[29] Gates S J Jr 1995 Vector multiplets and the phases of n = 2 theories in 2-d: through the looking glass Phys.

Lett. B 352 43–9
[30] Yau S-T (ed) 1990 Mirror Manifolds (Hong Kong: International Press)
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